Phân lập vi khuẩn tổng hợp enzyme agarase từ nước biển và xác định hoạt tính của enzyme
Main Article Content
Tóm tắt
Nghiên cứu này nhằm mục tiêu phân lập vi khuẩn có khả năng tổng hợp enzyme agarase từ nước biển và xác định hoạt tính của enzyme. Từ 8 mẫu nước biển thu thập tại các địa điểm khác nhau ở tỉnh Bà Rịa – Vũng Tàu, đã phân phập được 21 chủng vi khuẩn có khả năng phân giải agar trên đĩa thạch với đường kính vòng phân giải dao động từ 4,0 đến 7,0 cm sau 2 ngày ủ ở nhiệt độ phòng. Năm chủng vi khuẩn (M1, M5, M7, M62B, và M71) tạo đường kính vòng phân giải lớn nhất có hoạt độ enzyme agarase thô được xác định trong khoảng 0,15 – 0,22 U/mL khi phản ứng với cơ chất agarose, và có trình tự 16S rDNA tương đồng (> 96%) với chi Vibrio. Trong đó, chủng vi khuẩn M71 có hoạt tính agarase cao nhất và được dùng để đánh giá khả năng phân giải rong biển. Sự thủy phân rong đỏ Gracilaria bằng dịch enzyme thô của chủng M71 ở nồng độ 5% (v/v) giải phóng 915 915 µM/mL đường khử sau 24 giờ ủ ở 40oC.
Article Details
Tài liệu tham khảo
Agbo, J. A. C., & Moss, M. O. (1979). The isolation and characterization of agarolityc bacteria from a Low land river. Journal of General Microbiology 115(2), 355-368.
Chi, W. J., Chang, Y. K., & Hong, S. K. (2012) Agar degradation by microorganisms and agar-degrading enzymes. Applied Microbiology and Biotechnology 94(4), 917-930. https://doi.org/10.1007/s00253-012-4023-2
Choi, H. J., Hong, J. B., Park, J. J., Chi, W. J., Kim, M. C., Chang, Y. K., & Hong, S. K. (2011). Production of agarase from a novel Micrococcus sp. GNUM-08124 strain isolated from the east sea of Korea. Biotechnology and Bioprocess Engineering 16, 81-88. https://doi.org/10.1007/s12257-010-0271-0
Farmer, J. J., & Hickman-Brenner F. W. (1992). The genera vibrio and photobacterium. In Balows, A., Truper, H. G., Dworkin, M., Harder W., & Schleifer K. H. (Eds.). The Prokaryotes (2 nd ed., 2952-2301). New York, USA: Springer Verlag.
Faturrahman, F., Meryandini, A., Junior, M. Z., & Rusmana, I. (2011). Isolation and identification of an agarliquefying marine bacterium and some properties of its extracellular agarases. Biodiversitas 12(4), 192-197. https://doi.org/10.13057/biodiv/d120402
Fu, X. T., & Kim, S. M. (2010). Agarase: review of major sources, categories, purification method, enzyme characteristics and applications. Marine drugs 8(1), 200- 218. https://doi.org/10.3390/md8010200
Fu, X. T., Lin, H., & Kim, S. M. (2008). Purification and characterization of a novel β -agarase, AgaA34, from Agarivorans albus YKW-34. Applied Microbiology and Biotechnology 78, 265-273. https://doi.org/10.1007/s00253-007-1303-3
González, N. C., Hoyos, M. L. R., Kleine, L. L., & Casta ̃no D. M. (2018). Production of enzymes and siderophores by epiphytic bacteria isolated from the marine macroalga Ulva lactuca . Aquatic Biology 27, 107-118.
Han, W., Gu, J., Yan, Q., Li, J., Wu, Z., Gu, Q., & Li, Y. (2012). A polysaccharide-degrading marine bacterium Flammeovirga sp. MY04 and its extracellular agarase system. Journal of Ocean University of China 11, 375-382. https://doi.org/10.1007/s11802-012-1929-3
Huynh, Q. N. (2004). Results of investigation and and production of seaweed in Vietnam, and future orientations. Proceedings of National Conference on research and application of science and technology in aquaculture (559-569). Ha Noi, Vietnam.
Janda, J. M., Newton, A. E., & Bopp, C. A. (2015). Vibriosis. Clinics in Laboratory Medicine 35(2), 273-288. https://doi.org/10.1016/j.cll.2015.02.007
Kawaroe, M., Pratiwi, I., & Sunudin, A. (2017). Isolation and characterization of marine bacteria from macroalgae Gracilaria salicornia and Gelidium latifolium on agarolitic activity for bioethanol production. IOP Conference Series: Earth and Environmental Science 65, 012025.
Kawaroe, M., Rusmana, I., & Nurafni (2014). Production of bioethanol from macroalgae Gelidium sp. using agarase enzymes of marine bacteria. International Journal of Environment and Bioenergy 9(3), 243-251.
Kolhatkar, N., & Sambrani, S. (2018). Isolation and identification of agar degrading bacteria from marine environment. IOSR Journal of Pharmacy and Biological Sciences 13(3), 1-7.
Kumar, S., Gupta, R., Kumar, G., Sahoo, D., & Kuhad, R. C. (2013). Bioethanol production from Gracilaria verrucosa, a red alga, in a biorefinery approach. Bioresource Technology 135, 150-156. https://doi.org/10.1016/j.biortech.2012.10.120
Lane, D. J. (1991). 16S/23S rRNA sequencing. In Stackebrandt, E., and Goodfellow, M. (Eds.). Nucleic acid techniques in bacterial systematics (115-176). New York, NY: John Wiley.
Lavilla-Pitogo, C. R. (1992). Agar-digesting bacteria associated with ‘rotten thallus syndrome’ of Gracilaria sp. Aquaculture 102(1-2), 1-7. https://doi.org/10.1016/0044-8486(92)90283-Q
Liu, Y., Tian, X., Peng, C., & Du, Z. (2019). Isolation and characterization of an eosinophilic GH 16 β -agarase (AgaDL6) from an agar-degrading marine bacterium Flammeovirga sp. HQM9. Journal of Microbiology and Biotechnology 29(2), 235-243. https://doi.org/10.4014/jmb.1810.09065
Macián, M. C., Ludwig, W., Schleifer, K. H., Pujalte, M. J., & Garay, E. (2001). Vibrio agarivorans sp. nov., a novel agarolytic marine bacterium. International Journal of Systematic and Evolutionary Microbiology 51(6), 2031-2036. 10.1099/00207713-51-6-2031
Mansson, M., Gram, L., & Larsen, T. O. (2011). Production of bioactive secondary metabolites by marine Vibrionaceae. Marine Drugs 9(9), 1440-1468. https://doi.org/10.3390/md9091440
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31(3), 426-428. https://doi.org/10.1021/ac60147a030
Nguyen, H. D., Huynh, Q. N., Tran N. B., & Nguyen, V. T. (1993). Marine algae of North Vietnam. Ha Noi, Vietnam: Science and Technics Publishing House.
Oh, C., Nikapitiya, C., Lee, Y., Whang, I., Kang, D. H., Heo, S. J., Choi, Y. U., & Lee, J. (2010). Molecular cloning, characterization and enzymatic properties of a novel β -agarase from a marine isolate Pseudoalteromonas sp. Ag52. Brazilian Journal of Microbiology 41(4), 876-889. https://doi.org/10.1590/S1517-83822010000400006
Rioux, L. E., & Turgeon, S. L. (2015). Seaweed carbohydrates. In Tiwari, B. K., & Troy D. J. (Eds.). Seaweed sustainability: Food and non-food applications (141- 192). Massachusetts, USA: Academic Press.
Robinson, P. K. (2015). Enzymes: principles and biotechnological applications. Essays in biochemistry 59, 1-41. https://doi.org/10.1042/bse0590001
Saravanan, D., Kumar, V. S., & Radhakrishnan, M. (2015). Isolation and optimization of agarase producing bacteria from marine sediments. International Journal of ChemTech Research 8(4), 1701-1705.
Thulasidas, S. (2012). Isolation and characterization of agarolytic microorganisms and purification of an extracellular enzyme agarase. International Journal of Pharmaceutical & Biological Archives 3(4), 965-968.
Usov, A. I. (2011). Chapter 4 - Polysaccharides of the red algae. Advances in Carbohydrate Chemistry and Biochemistry 65, 115-217. https://doi.org/10.1016/B978-0-12-385520-6.00004-2
Wang, J., Jiang, X., Mou, H., & Guan, H. (2004). Antioxidation of agar oligosaccharides produced by agarase from a marine bacterium. Journal of Applied Phycology 16, 333-340. https://doi.org/10.1023/B:JAPH.0000047944.40463.e6
Wang, J., Mou, H., Jiang, X., & Guan, H. (2006). Characterization of a novel β -agarase from marine Alteromonas sp. SY37–12 and its degrading products. Applied Microbiology and Biotechnology 71, 833- 839. https://doi.org/10.1007/s00253-005-0207-3
Yanagisawa, M., Kawai, S., & Murata, K. (2013). Production of high concentrations of bioethanol from seaweeds. Bioengineered 4(4), 224-235. https://doi.org/10.4161/bioe.23396
Yang, Z., Liao, Y., Fu, X., Zaporski, J., Peters, S., Jamison, M., Liu, Y., Wullschleger, S. D., Graham, D. E., & Gu, B. (2019). Temperature sensitivity of mineral-enzyme interactions on the hydrolysis of cellobiose and indican by β -glucosidase. Science of The Total Environment 686, 1194-1201. https://doi.org/10.1016/j.scitotenv.2019.05.479
Zeng, C., Zhang, L., Miao, S., Zhang, Y., Zeng, S., & Zheng, B. (2016). Preliminary characterization of a novel β -agarase from Thalassospira profundimonas. SpringerPlus 5(1), 1-8.
Zhang, C., & Kim, S. K. (2008). Research and application of marine microbial enzymes: Status and prospects. Marine Drugs 8(6), 1920-1934. https://doi.org/10.3390/md8061920