Presence of metal-resistance and antibiotic-resistance genes in Salmonella spp. isolated from broiler chicken farms in Vinh Long province, Vietnam
Main Article Content
Tóm tắt
Salmonella can carry multiple antibiotic-resistant and metalresistant genes and transmit these genes among strains worldwide. This study examined seventy-five Salmonella isolates from small-scale chicken farms (chicken feces, bedding, feed, wild animals) in Vinh Long province for the presence and relation of antibiotic and metal-resistance genes in these strains. The single PCR method was applied to detect seven antibiotic-resistance genes (blaampC, blaTEM, dfrA1, tetA, strA, sul2, mcr1) and four metal-resistance genes (pcoR, czcD, cnrA, silE). The results indicated that those Salmonella isolates harbored several patterns of antibiotic-resistance genes. Genes blaampC and tetA were the most prevalent (48.00%), while genes mcr1 and dfrA were the most minor (1.33%). Of those Salmonella isolates, 92.00% harbored one to five antibiotic-resistance genes, and the blaampC + strA pattern was frequently obtained (12.00%). Moreover, 30.67% of Salmonella isolates showed multidrug resistance to three or four antibiotic categories. Among metal-resistance genes, gene pcoR encoding for copper resistance was the most predominant (53.33%), and gene cnrA encoding for cobalt-nickel resistance was the lowest (5.33%). There were diverse patterns of metalresistance genes, and one Salmonella isolate carried four examined genes (1.33%). Furthermore, these Salmonella isolates had several combined patterns of metal-resistance and antibiotic-resistance genes. Among them, pcoR, czcD, and silE genes had a significant coefficient relation to the examined antibiotic-resistance genes. It indicated the correlation between metal resistance and antibiotic resistance genes and revealed the potential risk of increasing antibiotic resistance in Salmonella isolates in chicken farms in Vinh Long province.
Article Details
Tài liệu tham khảo
Ahmed, O. B., & Dablool, S. A. (2017). Quality improvement of the DNA extracted by boiling method in Gram-negative bacteria. International Journal of Bioassays 6(4), 5347-5349. http://dx.doi.org/10.21746/ijbio.2017.04.004.
Alali, W. Q., Thakur, S., Berghaus, R. D., Martin, M. P., & Gebreyes, W. A. (2010). Prevalence and distribution of Salmonella in organic and conventional broiler poultry farms. Foodborne Pathogens Disease 7(11), 1363-1371. https://doi.org/10.1089/fpd.2010.0566.
Allen, H. K., Donato, J., Wang, H. H., Cloud-Hansen, K. A., Davies, J., & Handelsman, J. (2010). Call of the wild: antibiotic resistance genes in natural environments. Nature Reviews Microbiology 8, 251–259. https://doi.org/10.1038/nrmicro2312.
Anton, A., Weltrowski, A., Haney, C. J., Franke, S., Grass, G., Rensing, C., & Nies, D. H. (2004). Characteristics of zinc transport by two bacterial cation diffusion facilitators from Ralstonia metallidurans CH34 and Escherichia coli. Journal of Bacteriology 186(22), 7499-7507. https://doi.org/10.1128/JB.186.22.7499-7507.2004.
Baker-Austin, C., Wright, M. S., Stepanauskas, R., & McArthur, J. V. (2006). Co-selection of antibiotic and metal resistance. Trends in Microbiology 14(4), 176-182. https://doi.org/10.1016/j.tim.2006.02.006.
Barrow, G. I., & Faltham, R. K. A. (2003). Cowan and Steel’s manual for the identification of medical bacteria (3rd ed.). Cambridge, UK: Cambridge University Press.
Capita, R., & Alonso-Calleja, C. (2013). Antibioticresistant bacteria: a challenge for the food industry. Critical Reviews in Food Science and Nutrition 53(1), 11-48. https://doi.org/10.1080/10408398.2010.519837.
Carattoli, A., Filetici, E., Villa, L., Dionisi, A. M., Ricci, A., & Luzzi, I. (2002). Antibiotic resistance genes and Salmonella genomic island 1 in Salmonella enterica serovar Typhimurium isolted in Italy. Antimicrobial Agents and Chemotherapy 46(9), 2821-2828. https://doi.org/10.1128/AAC.46.9.2821-2828.2002.
Caroff, N., Espaze, E., Berard, I., Richet, H., & Reynaud, A. (1999). Mutations in the ampC promoter of Escherichia coli isolates resistant to oxyiminocephalosporins without extended spectrum β-lactamase production. FEMS Microbiology Letters 173(2), 459-465. https://doi.org/10.1111/j.1574-6968.1999.tb13539.x.
Chuanchuen, R., Pathanasophon, P., Khemtong, S., Wannaprasat, W., & Padungtod, P. (2008). Susceptibilities to antimicrobials and disinfectants in Salmonella isolates obtained from poultry and swine in Thailand. Journal of Veterinary Medical Science 70(6), 595-601. https://doi.org/10.1292/jvms.70.595.
Dantas, S. T. A., Camargo, C. H., Tiba-Casas, M. R., Vivian, R. C., Pinto, J. P. A. N., Pantoja, J. C. F., Hernandes, R. T., Fernandes, Júnior A., & Rall V. L. M. (2020). Environmental persistence and virulence of Salmonella spp. Isolated from a poultry slaughterhouse. Food Research International 129, 108835. https://doi.org/10.1016/j.foodres.2019.108835
Das, T., Rana, E. A., Dutta, A., Bostami, M. B., Rahman, M., Deb, P., Nath, C., Barua, H., & Biswas, P. K. (2021). Antimicrobial resistance profiling and burden of resistance genes in zoonotic Salmonella isolated from broiler chicken. Veterinary Medicine and Science 8(1), 237-244. https://doi.org/10.1002/vms3.648.
Deng, W. W., Quan, Y., Yang, Z. S., Guo, J. L., Zhang, L. X., Liu, L. S., Chen, J. S., Zhou, K., He, L., Li, B., Gu, F. Y., Zhao, H. S., & Zou, K. L. (2018). Antibiotic resistance in Salmonella from retail foods of animal origin and its association with disinfectant and heavy metal resistance. Microbial Drug Resistance 24(6), 782-791. https://doi.org/10.1089/mdr.2017.0127.
Elnahriry, S. S., Khalifa, H. O., Soliman, A. M., Ahmed, A. M., Hussein, A. M., Shimamoto, T., & Shimamoto, T. (2016). Emergence of plasmid-mediated colistin resistance gene mcr-1 in a clinical Escherichia coli isolate from Egypt. Antimicrobial Agents and Chemotherapy 60(5), 3249-3250. https://doi.org/10.1128/aac.00269-16.
Fardsanei, F., Nikkhahi, F., Bakhshi, B., Salehi, T. Z., Tamai, I. A., & Dallal, M. S. (2016). Molecular characterization of Salmonella enterica serotype Enteritidis isolates from food and human samples by serotyping, antimicrobial resistance, plasmid profiling, (GTG) 5-PCR and ERIC- PCR. New Microbes and New Infections 14, 24-30. https://doi.org/10.1016/j.nmni.2016.07.016.
Hobman, J. L., & Crossman, L. C. (2015). Bacterial antimicrobial metal ion resistance. Journal of Medical Microbiology 64(5), 471-497. https://doi.org/10.1099/jmm.0.023036-0.
Ji, L. X., Shen, H. Q., Liu, F., Ma, J., Xu, G., Wang, L. Y., & Wu, H. M. (2012). Antibiotic resistance gene abundances associated with antibiotics and heavy metals in animal manures and agricultural soils adjacent to feedlots in Shanghai, China. Journal of Hazardous Materials 235-236, 178-185. https://doi.org/10.1016/j.jhazmat.2012.07.040.
Jouini, A., Vinué, L., Slama, K. B., Saenz, Y., Klibi, N., Hammami, S., Boudabous, A., & Torres, C. (2007). Characterization of CTX-M and SHV extended-spectrum β-lactamases and associated resistance genes in Escherichia coli strains of food samples in Tunisia. Journal of Antimicrobial Chemotherapy 60(5), 1137-1141. https://doi.org/10.1093/jac/dkm316.
Kulwichit, W., Chatsuwan, T., Unhasuta, C., Pulsrikarn, C., Bangtrakulnonth, A., & Chongthaleong, A. (2007). Drug-resistant nontyphoidal Salmonella bacteremia, Thailand. Emerging Infectious Diseases 13(3), 501-502. https://doi.org/10.3201/eid1303.061059.
Lu, J., Wang, Y., Jin, M., Yuan, G. Z., Bond, P., & Guo, H. J. (2020). Both silver ions and silver nanoparticles facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes. Water Research 169, 115229. https://doi.org/10.1016/j.watres.2019.115229.
Mazhar, S. H., Li, J. X., Rashid, A., Su, M. J., Xu, Q. J., Brejnrod, A. D., Su, Q. J., Wu, J. Y., Zhu, G. Y., Zhou, G. S., Feng, W. R., & Rensing, C. (2021). Co-selection of antibiotic resistance genes, and mobile genetic elements in the presence of heavy metals in poultry farm environments. Science of The Total Environment 755(Pt2), 142702. https://doi.org/10.1016/j.scitotenv.2020.142702.
Mustafa, G. R., Zhao, K., He, P. X., Chen, J. S., Liu, L. S., Mustafa, A., He, L., Yang, Y., XiuYu, M., Penttinen, P., Ao, L. X., Liu, P. A., Shabbir, M. Z., Xu, B. X., & Zou, K. L. (2021). Heavy metal resistance in Salmonella Typhimurium and its association with disinfectant and antibiotic resistance. Frontiers in Microbiology 12, 702725. https://doi.org/10.3389/fmicb.2021.702725.
Nair, D. V. T., Venkitanarayanan, K., & Johny, A. K. (2018). Antibiotic-resistant Salmonella in the food supply and the potential role of antibiotic alternatives for control. Foods 7(10), 1-24. https://doi.org/10.3390/foods7100167.
Ngoi, S. T., & Thong, K. L. (2013). Molecular characterization showed limited genetic diversity among Salmonella Enteritidis isolated from humans and animals in Malaysia. Diagnostic Microbiology and Infectious Disease 77(4), 304-311. https://doi.org/10.1016/j.diagmicrobio.2013.09.004.
Nguyen, T. K., Nguyen, L. T., Chau, T. H. T., Nguyen, T. T., Tran, B. N., Taniguchi, T., Hayashidani, H., & Ly, K. T. L. (2021). Prevalence and antibiotic resistance of Salmonella isolated from poultry and its environment in the Mekong Delta, Vietnam. Veterinary World 14(12), 3216-3223. https://doi.org/10.14202/vetworld.2021.3216-3223.
Nguyen, V. T, Carrique-Mas, J. J., Nghia, N. H., P. Tu, L. T., Mai, H. H., Tuyen, H. T., Campbell, J., Nhung, N. T., Nhung, H. N., Minh, P. V., B. Chieu, T. T., Hieu, T. Q., N. Mai, N. T., Baker, S., Wagenaar, J. A., Hoa, N. T., & Schultsz, C. (2017). Non-typhoidal Salmonella colonization in chickens and humans in the Mekong Delta of Vietnam. Zoonoses and Public Health 64(2), 94-99. https://doi.org/10.1111/zph.12270.
Nguyen, V. T., Carrique-Mas, J. J., Ngo, T. H., Ho, H. M., Ha, T. T., Campbell, J. I., Nguyen, T. N., Hoang, N. N., Pham, V. M., Wagenaar, J. A., Hardon, A., Thai, Q. H., & Schultsz, C. (2015). Prevalence and risk factors for carriage of antimicrobial-resistant Escherichia coli on household and small-scale chicken farms in the Mekong Delta of Vietnam. Journal of Antimicrobial Chemotherapy 70(7), 2144-2152. https://doi.org/10.1093/jac/dkv053.
Peirano, G., Agersø, Y., Aarestrup, F. M., Falavina dos Reis, E. M., & Rodrigues, D. P. (2006). Occurrence of integrons and antimicrobial resistance genes among Salmonella enterica from Brazil. Journal of Antimicrobial Chemotherapy 58(2), 305-309. https://doi.org/10.1093/jac/dkl248.
Ramatla, T., Taioe, M. O., Thekisoe, O. M., & Syakalima, M. (2019). Confirmation of antimicrobial resistance by using resistance genes of isolated Salmonella spp. in chicken houses of North West, South Africa. World’s Veterinary Journal 9(3), 158-165. https://dx.doi.org/10.36380/scil.2019.wvj20.
Randall, L. P., Cooles, S. W., Osborn, M. K., Piddock, L. J. V., & Woodward, M. J. (2004). Antibiotic resistance genes, integrons and multiple antibiotic resistance in thirty-five serotypes of Salmonella enterica isolated from humans and animals in the UK. Journal of Antimicrobial Chemotherapy 53(2), 208-216. https://doi.org/10.1093/jac/dkh070.
Sáenz, Y., Vinué, L., Ruiz, E., Somalo, S., Martínez, S., Rojo-Bezares, B., Zarazaga, M., & Torres, C. (2010). Class 1 integrons lacking qacEΔ1 and sul1 genes in Escherichia coli isolates of food, animal and human origins. Veterinary Microbiology 144(3-4), 493-497. https://doi.org/10.1016/j.vetmic.2010.01.026.
Singh, S., Yadav, A. S., Singh, S. M., & Bharti, P. (2010). Prevalence of Salmonella in chicken eggs collected from poultry farms and marketing channels and their antimicrobial resistance. Food Research International 43(8), 2027-2030. https://doi.org/10.1016/j.foodres.2010.06.001.
Stepanauskas, R., Glenn, T. C., Jagoe, C. H., Tuckfield, R. C., Lindell, A. H., King, C. J., & McArthur, J. V. (2006). Coselection for microbial resistance to metals and antibiotics in freshwater microcosms. Environmental Microbiology 8(9), 1510-1514. https://doi.org/10.1111/j.1462-2920.2006.01091.x.
Tezel, U., & Pavlostathis, S. G. (2015). Quaternary ammonium disinfectants: microbial adaptation, degradation, and ecology. Current Opinion in Biotechnology 33, 296-304. https://doi.org/10.1016/j.copbio.2015.03.018.
Velhner, M., Milanov, D., & Kozoderović, G. (2018). Salmonella spp. in poultry: a constant challenge and new insights. Journal of The Hellenic Veterinary Medical Society 69(2), 899-910. https://doi.org/10.12681/jhvms.18012.
Waghamare, R. N., Paturkar, A. M., Vaidya, V. M., Zende, R. J., Dubal, Z. N., Dwivedi, A., & Gaikwad, R. V. (2018). Phenotypic and genotypic drug resistance profile of Salmonella serovars isolated from poultry farm and processing units located in and around Mumbai city, India. Veterinary World 11(12), 1682-1688. https://doi.org/10.14202/vetworld.2018.1682-1688.
Woods, E., Cochrane, C., & Percival, S. (2009). Prevalence of silver resistance genes in bacteria isolated from human and horse wounds. Veterinary Microbiology 138(3-4), 325-329. https://doi.org/10.1016/j.vetmic.2009.03.023.
Yang, Z. S., Deng, W. W., Liu, L. S., Yu, M. X., Mustafa, G. R., Chen, J. S., He, L., Ao, L. X., Yang, Y., Zhou, K., Li, B., Han, F. X., Xu, B. X., & Zou, K. L. (2020). Presence of heavy metal resistance genes in Escherichia coli and Salmonella isolates and analysis of resistance gene structure in E. coli E308. Journal of Global Antimicrobial Resistance 21, 420-426. https://doi.org/10.1016/j.jgar.2020.01.009.
Yildirim, Y., Gonulalan, Z., Pamuk, S., & Ertas, N. (2011). Incidence and antibiotic resistance of Salmonella spp. on raw chicken carcasses. Food Research International 44(3), 725-728. https://doi.org/10.1016/j.foodres.2010.12.040.
Zhang, Y., Gu, A. Z., Cen, T., Li, Y. X., He, M., Li, D., & Chen, M. J. (2018). Sub-inhibitory concentrations of heavy metals facilitate the horizontal transfer of plasmid-mediated antibiotic resistance genes in water environment. Environmental Pollution 237, 74-82. https://doi.org/10.1016/j.envpol.2018.01.032.
Zhu, T. Y., Lai, M. H., Zou, K. L., Yin, S., Wang, T. C., Han, F. X., Xia, L. X., Hu, D. K., He, L., Zhou, K., Chen, J. S., Ao, L. X., & Liu, L. S. (2017). Antimicrobial resistance and resistance genes in Salmonella strains isolated from broiler chickens along the slaughtering process in China. International Journal of Food Microbiology 259, 43-51. https://doi.org/10.1016/j.ijfoodmicro.2017.07.023.