Nguyễn Ngọc Yến Nhi , Nguyễn Dương Hoàng Vinh , Lê Ngọc Thúy Đông & Trịnh Thị Phi Ly *

* Correspondence: Trịnh Thị Phi Ly (email: phily@hcmuaf.edu.vn)

Main Article Content

Tóm tắt

Polyphenols are secondary compounds that occur widely in plants and are highly effective in controlling plant pathogenic microorganisms. This study aimed to screen polyphenolic-rich plant extracts for their antifungal potential against Fusarium oxysporum. Several plant materials including cashew leaves, castor fruits, castor leaves, coffee husks, giant milkweed leaves, mangosteen pericarps and soapberry fruits were investigated for their total phenolic content. The results showed that cashew leaves and mangosteen pericarps contained high level of polyphenols at 108.23 and 124.14 mg GAE/g, respectively. The main phenolic compounds found in cashew leaves were gallic acid and protocatechuic acid at 377.29 mg/100 g and 56.44 mg/100 g, respectively. Mangosteen pericarps contained 16.22 mg/100 g protocatechuic acid and 55.75 mg/100 g of chlorogenic acid. The antifungal activity of cashew leaf and mangosteen pericarp extracts against F. oxysporum was 32.92 - 77.08% and 68.33 - 83.75%, respectively at the extract concentration from 2% to 10%. The combined use of cashew leaf and mangosteen pericarp extracts exhibited an additive inhibition against F. oxysporum. Cashew leaves and mangosteen pericarp are potential materials for producing bio-fungicides, which are not only effective but also safe for human and the environment.

Article Details

Tài liệu tham khảo

Acheuk, F., Basiouni, S., Shehata, A. A., Dick, K., Hajri, H., Lasram, S., Yilmaz, M., Emekci, M., Tsiamis, G., Spona-Friedl, M., May-Simera, H., Eisenreich, W., & Ntougias, S. (2022). Status and prospects of botanical biopesticides in Europe and Mediterranean countries. Biomolecules 12(2), 311. https://doi.org/10.3390/biom12020311.

Alotibi, F. O., Ashour, E. H., & Al-Basher, G. (2020). Evaluation of the antifungal activity of Rumex vesicarius L. and Ziziphus spina-christi (L) Desf. aqueous extracts and assessment of the morphological changes induced to certain myco-phytopathogens. Saudi Journal of Biological Sciences 27(10), 2818-2828. https://doi.org/10.1016/j.sjbs.2020.06.051.

Bhardwaj, S. K. (2012). Evaluation of plant extracts as antifungal agents against Fusarium solani (Mart.) Sacc. World Journal of Agricultural Sciences 8(4), 385-388.

Bouslamti, M., El Barnossi, A., Kara, M., Alotaibi, B. S., Al Kamaly, O., Assouguem, A., Lyoussi, B., & Benjelloun, A. S. (2022). Total polyphenols content, antioxidant and antimicrobial activities of leaves of Solanum elaeagnifolium Cav. from Morocco. Molecules 27(13), 4322-4335. https://doi.org/10.3390/molecules27134322.

Buffi, M., Cailleau, G., Kuhn, T., Li Richter, X. Y., Stanley, C. E., Wick, L. Y., Chain, P. S., Bindschedler, S., & Junier, P. (2023). Fungal drops: a novel approach for macro-and microscopic analyses of fungal mycelial growth. Microlife 4, 1-13. https://doi.org/10.1093/femsml/uqad042.

Chang, S. T., Wang, S. Y., Wu, C. L, Chen, P. F., & Kuo, Y. H. (2000). Comparison of the antifungal activity of cadinane skeletal sesquiterpenoids from Taiwania (Taiwania cryptomerioides Hayata) heartwood. Holzforschung 54(3), 241-245.

Cowan, M. M. (1999). Plant products as antimicrobial agents. Clinical Microbiology Reviews 12(4), 564-582. https://doi.org/10.1128/cmr.12.4.564.

Do, X. T., Nguyen, N. H., Phung, V. T., & Tran, V. Q. (2011). Isolation two pure compounds from pericarp of Garcinia mangostana L. and their bioactivities assay. CTU Journal of Science 18a, 153-160.

Duangjan, C., Rangsinth, P., Gu, X., Wink, M., & Tencomnao, T. (2019). Lifespan extending and oxidative stress resistance properties of a leaf extracts from Anacardium occidentale L. in Caenorhabditis elegans. Oxidative Medicine and Cellular Longevity 2019(1), 1-16. https://doi.org/10.1155/2019/9012396.

Edel-Hermann, V., & Lecomte, C. (2019). Current status of Fusarium oxysporum formae speciales and races. Phytopathology 109(4), 512-530. https://doi.org/10.1094/PHYTO-08-18-0320-RVW.

El-Nagar, A., Elzaawely, A. A., Taha, N. A., & Nehela, Y. (2020). The antifungal activity of gallic acid and its derivatives against Alternaria solani, the causal agent of tomato early blight. Agronomy 10(9), 1402. https://doi.org/10.3390/agronomy10091402.

Javed, S., & Bashir, U. (2012). Antifungal activity of different extracts of Ageratum conyzoides for the management of Fusarium solani. African Journal of Biotechnology 11(49), 11022-1029. https://doi.org/10.5897/AJB12.366.

Kaur, G., Singh, A., & Dar, B. N. (2020). Mangosteen (Garcinia mangostana L.). In Nayik, G. A., & Gull, A. (Eds.). Antioxidants in fruits: properties and health benefits (1st ed., 83-101). Singapore: Springer Nature.

Khanzada, B., Akhtar, N., Okla, M. K., Alamri, S. A., Al-Hashimi, A., Baig, M. W., Rubnawaz, S., AbdElgawad, H., Hirad, A. H., Haq, I., & Mirza, B. (2021). Profiling of antifungal activities and in silico studies of natural polyphenols from some plants. Molecules 26(23), 7164. https://doi.org/10.3390/molecules26237164.

Ma, L. J., Geiser, D. M., Proctor, R. H., Rooney, A. P., O’Donnell, K., Trail, F., Gardiner, D. M., Manners, J. M., & Kazan, K. (2013). Fusarium pathogenomics. Annual Review of Microbiology 67(1), 399-416. https://doi.org/10.1146/annurev-micro-092412-155650.

Martínez, G., Regente, M., Jacobi, S., Del Rio, M., Pinedo, M., & Canal, L. (2017). Chlorogenic acid is a fungicide active against phytopathogenic fungi. Pesticide Biochemistry and Physiology 140, 30-35. https://doi.org/10.1016/j.pestbp.2017.05.012.

Mirghani, M. (2022). A Review of antifungal activity of combined plant extracts or plant exudates from medicinal plants either together or with known antifungal agents. European Journal of Medicinal Plants 33(8), 16-47. https://doi.org/10.9734/EJMP/2022/v33i830483

Mohamed, M. S., Saleh, A. M., Abdel-Farid, I. B., & El-Naggar, S. A. (2017). Growth, hydrolases and ultrastructure of Fusarium oxysporum as affected by phenolic rich extracts from several xerophytic plants. Pesticide Biochemistry and Physiology 141, 57-64. https://doi.org/10.1016/j.pestbp.2016.11.007.

Muller-Riebau, F., Berger, B., & Yegen, O. (1995). Chemical composition and fungitoxic properties to phytopathogenic fungi of essential oils of selected aromatic plants growing wild in Turkey. Journal of Agricultural and Food Chemistry 43(8), 2262-2266. https://doi.org/10.1021/jf00056a055.

Nguyen, D. H. V., Nguyen, T. V. A., Truong, Q. T., & Trinh, T. P. L. (2019). Optimization of total phenolic extraction of Chromolaena odorata leaf for antifungal activity against plant pathogens. The Journal of Agriculture and Development 18(6), 38-48. https://doi.org/10.52997/jad.6.06.2019.

Nguyen, V. D. H., Nguyen, T. T. T., Huynh, T. N. P., Ho, H. H., Nguyen, A. T. V., & Trinh, L. T. P. (2024). Effective control of Fusarium wilt on tomatoes using a combination of phenolicrich plant extracts. European Journal of Plant Pathology, 1-18.

Nguyen, X. H., Naing, K. W., Lee, Y. S., Moon, J. H., Lee, J. H., & Kim, K. Y. (2015). Isolation and characteristics of protocatechuic acid from Paenibacillus elgii HOA73 against Botrytis cinerea on strawberry fruits. Journal of Basic Microbiology 55(5), 625-634. https://doi.org/10.1002/jobm.201400041.

Oufensou, S., Balmas, V., Azara, E., Fabbri, D., Dettori, M. A., Schüller, C., Zehetbauer, F., Strauss, J., Delogu, G., & Migheli, Q. (2020). Naturally occurring phenols modulate vegetative growth and deoxynivalenol biosynthesis in Fusarium graminearum. ACS Omega 5(45), 29407-29415. https://doi.org/10.1021/acsomega.0c04260.

Rizaldy, D., Hartati, R., Nadhifa, T., & Fidrianny, I. (2021). Chemical compounds and pharmacological activities of mangosteen (Garcinia mangostana L.) - Updated review. Biointerface Research in Applied Chemistry 12(2), 2503-2516. https://doi.org/10.33263/BRIAC122.25032516.

Shiekh, K. A., Liangpanth, M., Luesuwan, S., Kraisitthisirintr, R., Ngiwngam, K., Rawdkuen, S., Rachtanapun, P., Karbowiak, T., & Tongdeesoontorn, W. (2022). Preparation and characterization of bioactive chitosan film loaded with cashew (Anacardium occidentale) leaf extract. Polymers 14(3), 540-551. https://doi.org/10.3390/polym14030540.

Soyel, S., Ruidas, S., Roy, P., Mondal, S., Bhattacharyya, S., & Hazra, D. (2022). Biopesticides as ecofriendly substitutes to synthetic pesticides: An insight of present status and future prospects with improved bio-effectiveness, self-lives, and climate resilience. International Journal of Environmental Sustainability and Protection 2(2), 1-12. https://doi.org/10.35745/ijesp2022v02.02.0001.

Tafinta, I. Y., Okoye, N. H., Batagarawa, U. S., Hamma, I. I., & Abubakar, M. (2020). Phytochemical screening and antifungal activities of cashew (Anacardium occidentale Linn.) leaves extract on some fungal isolates. Asian Plant Research Journal 5(3), 30-37. https://doi.org/10.9734/aprj/2020/v5i330108.

Trinh, L. T. P., Choi, Y. S., & Bae, H. J. (2018). Production of phenolic compounds and biosugars from flower resources via several extraction processes. Industrial Crops and Products 125, 261-268. https://doi.org/10.1016/j.indcrop.2018.09.008.

Vo, M. T., & Nguyen, T. X. P. (2023). Preparation and bioactivity evaluation of mangosteen peel (Garcinia mangostana L.) dry extract in Vietnam. Journal of Military Pharmaco - Medicine 48(7), 5-14. https://doi.org/10.56535/jmpm.v48i7.423.

Wang, Y., Xu, Y., & Liu, Z. (2022). A review of plant antipathogenic constituents: Source, activity and mechanism. Pesticide Biochemistry and Physiology 188, 105225. https://doi.org/10.1016/j.pestbp.2022.105225.

Wu, H. S., Zhou, X. D., Shi, X., Liu, Y. D., Wang, M. Y., Shang, X. X., Gu, D. L., Wang, W. Z., & Wu, C. W. (2014). In vitro responses of Fusarium oxysporum f. sp. niveum to phenolic acids in decaying watermelon tissues. Phytochemistry Letters 8, 171-178. https://doi.org/10.1016/j.phytol.2013.08.013.

Yenjit, P., Issarakraisila, M., Intana, W., Sattasalalchai, S., Suwanno, T., & Chantrapromma, K. (2007). Efficacy of extracted substances from the pericarp of Garcinia mangostana to control major diseases of tropical fruits in the laboratory. In International Workshop on Tropical and Subtropical Fruits 787, 339-344. https://doi.org/10.17660/ActaHortic.2008.787.42.

Yuan, J., Wu, Y., Zhao, M., Wen, T., Huang, Q., & Shen, Q. (2018). Effect of phenolic acids from banana root exudates on root colonization and pathogen suppressive properties of Bacillus amyloliquefaciens NJN-6. Biological Control 125, 131-137. https://doi.org/10.1016/j.biocontrol.2018.05.016.