Nguyễn Thùy Phương * , Trịnh Kiều Vương , Trần Thị Dương Hiền , Tôn Nữ Thị Trinh , Nguyễn Thị Thúy Lan & Nguyễn Ngọc Anh

* Correspondence: Nguyễn Thùy Phương (email: ntphuong.huaf@hueuni.edu.vn)

Main Article Content

Tóm tắt

Land use and land cover (LULC) change is a key factor influencing land surface temperature (LST) dynamics. This change reflects partly global warming and climate change at local and regional scales. This study aimed to evaluate the effect of LULC on LST change in Lac Duong mountainous district, Lam Dong province in the past 10 years (2013 - 2023), and predict the LST change in 2030. The study used satellite image data from Landsat 8 and 9 OLI to build LULC and LST maps and used the CA-ANN model to predict the LST map. The results showed that the forest land had the LST below 25°C, with the below 20°C LST area correlated negatively with the forest land area, while 20 - 25°C LST correlated positively, especially at the temperature of 22 - 25°C (R2 = 0.97). The 22 - 25°C and 30 - 35°C temperature levels (R2 = 0.76 and R2 = 0.86) correlated sharply with the crop land area. The LST levels between 30 - 40°C reflected the built-up land and bare land with the highest correlation of R2 = 0.68 and 0.88, respectively. The LST level 20 - 22°C represented the water body area (R2 = 0.87). The LULC changes had an impact on the LST change in the past 10 years in Lac Duong district. While the forest land area decreased slightly by 0.5%, the cool LST area fell considerably by 10.5% compared to 10 years ago. An almost doubling of the cropland area also led to a doubling in the 25 - 35°C LST areas. In addition, the 35 - 40°C LST level started to happen in several regions. The LST change was predicted to keep increasing in 2030. The temperature was predicted to increase by 2 - 3°C with a maximum temperature of 42°C.

Article Details

Tài liệu tham khảo

Baig, M. F., Mustafa, M. R. U., Baig, I., Takaijudin, H. B., & Zeshan, M. T. (2022). Assessment of land use land cover changes and future predictions using CA-ANN simulation for Selangor, Malaysia. Water 14(3), 402. https://doi.org/10.3390/w14030402.

Bhunia, G. S., Chatterjee, U., Kashyap, A., & Shit, P. K. (2021). Land reclamation and restoration strategies for sustainable development: geospatial technology based approach (1st ed.). Amsterdam, The Netherlands: Elsevier.

Carrillo-Niquete, G. A., Andrade, J. L., ValdezLazalde, J. R., Reyes-García, C., & HernándezStefanoni, J. L. (2022). Characterizing spatial and temporal deforestation and its effects on surface urban heat islands in a tropical city using Landsat time series. Landscape and Urban Planning 217(4), 1-13. https://doi.org/10.1016/j.landurbplan.2021.104280.

Chang, Y., Hou, K., Li, X., Zhang, Y., & Chen, P. (2018). Review of land use and land cover change research progress. IOP Conference Series: Earth and Environmental Science 113, 012087. https://doi.org/10.1088/1755-1315/113/1/012087.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20(1), 37-46. https://doi:10.1177/001316446002000104.

ESA (European Space Agency). Land surface temperature. (2024). Retrieved July 16, 2024, from https://climate.esa.int/en/projects/landsurface-temperature/.

Hoang, A. H. (2016). A study on land surface temperature (LST) from landsat 8 TIRS - a case study of Thai Nguyen city. Journal of Hydrometeorology 10(670), 26-32.

Islami, F. A., Tarigan, S. D., Wahjunie, E. D., & Dasanto, B. D. (2022). Accuracy assessment of land use change analysis using google earth in sadar watershed mojokerto regency. IOP Conference Series: Earth and Environmental Science 950, 012091. https://doi.org/10.1088/1755-1315/950/1/012091.

Jagtap, A. A., Shedge, D. K., & Mane, P. B. (2024). Exploring the effects of land use/land cover (LULC) modifications and land surface temperature (LST) in Pune, Maharashtra with anticipated LULC for 2030. International Journal of Geoinformatics 20(2), 42-62. https://doi.org/10.52939/ijg.v20i2.3065.

Kafy, A. A., Dey, N. N., Rakib, A. A., Rahaman, Z. A., Nasher, N. M. R., & Bhatt, A. (2021). Modeling the relationship between land use/land cover and land surface temperature in Dhaka, Bangladesh using CA-ANN algorithm. Environmental Challenges 4, 100190.https://doi.
org/10.1016/j.envc.2021.100190.

Kummari, R., Allu, P. K. R., Mesapam, S., Allu A. R., Vinakallu, B., & Ankam, B. P. (2022). Effect of LULC changes on land surface temperature. In Mesapam, S., Ohri, A., Sridhar, V., & Tripathi, N. K (Eds.). Developments and applications of geomatics 450, 155-174. Singapore: Springer Nature. https://doi.org/10.1007/978-981-99-8568-5_12.

Lai, T. A., Pham, V. M., & Phạm, M. T. (2018). Quantitative assessment of land use/land cover change through multi-temporal remote sensed data in Dien Bien province, Vietnam. Journal of Water Resources and Environmental Engineering 62, 72-29.

Li, X. (2010). Kappa - A critical review. Retrieved July 26, 2024, from https://uu.diva-portal.org/smash/get/diva2:326034/FULLTEXT01.pdf.

Li, Z. L., Wu, H., Duan, S. B., Zhao, W., Ren, H., Liu, X., Leng, P., Tang, R., Ye, X., Zhu, J., Sun, Y., Si, M., Liu, M., Zhang, X., Shang, G., Tang, B-H., Yan, G., & Zhou, C. (2023). Satellite remote sensing of global land surface temperature: Definition, methods, products, and applications. Reviews of Geophysics 61(1), e2022RG000777. https://doi.org/10.1029/2022RG000777.

Mehra, N., & Swain, J.B. (2024). Assessment of land use land cover change and its effects using artificial neural network-based cellular automation. Journal of Engineering and Applied Science 71(1), 70. https://doi.org/10.1186/s44147-024-00402-0.

Moisa, M. B., Gabissa, B. T., Wedajo, Y. N., Gurmessa, M. M., Deribew, K. T., Negasa, G. G., Negassa, M. D., & Gemeda, D. O. (2023). Analyzing the correlation of forest and wetland with land surface temperature by using geospatial technology: a case of Yayo district, Southwestern Ethiopia. Geocarto International 38(1), 2256300. https://doi.org/10.1080/10106049.2023.2256300.

NASA (National Aeronautics and Space Administration). (2024). Land surface temperature. Washington, USA: National Aeronautics and Space Administration.

NASA (National Aeronautics and Space Administration). (2023). Global temperature. Washington, USA: National Aeronautics and Space Administration.

NOAA (National Oceanic and Atmospheric Administration). (2024). What is the difference between land cover and land use? Maryland, USA: National Oceanic and Atmospheric Administration.

Nugraha, A. S. A., Kamal, M., Murti, S. H., & Widyatmanti, W. (2024). Accuracy assessment of land surface temperature retrievals from remote sensing imagery: pixel-based, single and multi-channel methods. Geomatics, Natural Hazards and Risk 15(1), 2324975. https://doi.org/10.1080/19475705.2024.2324975.

Nyatuame, M., Agodzo, S., Amekudzi, L. K., & Mensah-Brako, B. (2023). Assessment of past and future land use/cover change over Tordzie watershed in Ghana. Frontiers in Environmental Science 11, 1139264. https://doi.org/10.3389/fenvs.2023.1139264.

Onačillová, K., Gallay, M., Paluba, D., Péliová, A., Tokarčík, O., & Laubertová, D. (2022). Combining landsat 8 and sentinel-2 data in google earth engine to derive higher resolution land surface temperature maps in urban environment. Remote Sensing 14(6), 4076. https://doi.org/10.3390/rs14164076.

Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Oliver L. Phillips, O. L., Shvidenko, A., Simon L. Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., & Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science 333(6045), 988-993. https://doi.org/10.1126/science.1201609.

Patel, S., Indraganti, M., & Jawarneh, R. N. (2024). A comprehensive systematic review: impact of land use/land cover (LULC) on land surface temperatures (LST) and outdoor thermal comfort. Building and Environment 249, 111130. https://doi.org/10.1016/j.buildenv.2023.111130.

PCLDD (People’s Committee of Lac Duong District). (2023). Decision No. 1869/QD-UBND dated on September 29, 2023. On approving the land use planning until 2030 of Lac Duong district, Lam Dong province. Retrieved December 10, 2023, from https://thuvienphapluat.vn/van-ban/Batdong-san/Quyet-dinh-1869-QD-UBND-2023-quy-hoach-su-dung-dat-huyen-Lac-DuongLam-Dong-581702.aspx.

PCLDD (People’s Committee of Lac Duong District). (2023). Report on the results of implementing socio-economic development tasks in 2023. Lam Dong, Vietnam: People’s Committee of Lac Duong District.

Rahman, M. T. U., Tabassum, F., Rasheduzzaman, M., Saba, H., Sarkar, L., Ferdous, J., Uddin, S. Z., & Islam, A. Z. M. Z. (2017). Temporal dynamics of land use/land cover change and its prediction using CA-ANN model for southwestern coastal Bangladesh. Environmental Monitoring and Assessment 189(565), 1-18. https://doi.org/10.1007/s10661-017-6272-0.

Sajib, M. Q. U., & Wang, T. (2020). Estimation of land surface temperature in an agricultural region of Bangladesh from landsat 8: intercomparison of four algorithms. Sensors 20(6), 1778. https://doi.org/10.3390/s20061778.

Selmy, S. A. H., Kucher, D. E., Mozgeris, G., Moursy, A. R. A., Jimenez-Ballesta, R., Kucher, O. D., Fadl, M. E., & Mustafa, A. A. (2023). Detecting, (LULC) changes in arid regions using landsat images, ca-markov hybrid model, and gis techniques. Remote Sensing 15(23), 5522. https://doi.org/10.3390/rs15235522.

Seyam, M. M. H., Haque, M. R., & Rahman, M. M. (2023). Identifying the land use land cover (LULC) changes using remote sensing and GIS approach: A case study at Bhaluka in Mymensingh, Bangladesh. Case Studies in Chemical and Environmental Engineering 7, 100293. https://doi.org/10.1016/j.cscee.2022.100293.

Shahidan, M. F., Salleh, D. E., & Shariff, M. K. M. (2006). The influence of tree canopy on the thermal environment in a tropical climate: a preliminary study. iNTA Conference 2006 - Harmony in Culture and Nature. Geneva, Switzerland: WIPO. Retrieved July 2, 2024, from https://www.researchgate.net/publication/224054095_The_Influence_of_Tree_Canopy_on_Thermal_Environment_in_a_Tropical_Climate

Sudhakar, S., & Kameshwara S. V. C. R. (2010). Chapter 2: Land use and Land cover Analysis. In P. S. Roy, R. S. Dwivedi, & D. Vijayan (Eds.). Remote sensing application (2nd ed., 21-48). Retrieved July 1, 2024, from https://www.nrsc.gov.in/sites/default/files/pdf/ebooks/Chap_2_LULC.pdf.

Sun, J., Yang, J., Zhang, C., Yun, W., & Qu, J. (2013). Automatic remotely sensed image classification in a grid environment based on the maximum likelihood method. Mathematical and Computer Modelling 58(3-4), 573-581. https://doi.org/10.1016/j.mcm.2011.10.063.

Tian, L., Tao, Y., Li, M., Qian, C., Li, T., Wu, Y., & Ren, F. (2023). Prediction of land surface temperature considering future land use change effects under climate change scenarios in Nanjing city, China. Remote Sensing 15(11), 2914. https://doi.org/10.3390/rs15112914.

Trinh, T. T. H., & Cao T. D. (2014). Change in land use using pre-classification and post-classification. Journal of Mining and Earth Sciences 48(10), 58-62.

Weng, Q., Lu, D., & Schubring, J. (2004). Estimation of land surface temperature–vegetation abundance relationship for urban heat island studies. Remote Sensing of Environment 89(4), 467-483. https://doi:10.1016/j.rse.2003.11.005.

Zhang, M., Kafy, A. A., Xiao, P., Han, S., Zou, S., Saha, M., Zhang, C., & Tan, S. (2023). Impact of urban expansion on land surface temperature and carbon emissions using machine learning algorithms in Wuhan, China. Urban Climate 47, 101347. https://doi.org/10.1016/j.uclim.2022.101347.