Effects of water quality parameters on growth performance of intensive shrimp pond (Litopenaeus vannamei)
Main Article Content
Tóm tắt
Currently, to monitor water quality, farmers in Vietnam need to analyze various indicators which increase production costs. In addition, the limitation of analytical facilities and techniques is a challenge. The objective of this experiment was to evaluate the influence of water quality parameters on shrimp growth rates and the seasonal fluctuation in water quality. A total of 4 modules were randomly selected and analyzed daily for 8 critical parameters during rainy and dry seasons. The SPSS ver.26 was used to evaluate the correlation between multi-parameters and their impact on the performance of shrimp ponds. The results showed that shrimp growth was influenced by salinity, nitrite (NO2-), alkalinity and pH about 80.4%, 75.6%, 67.8%, and 55.7%, respectively. Moreover, water quality fluctuated more during the rainy season than during the dry season. Some parameters that exhibited high fluctuation in ponds were dissolved oxygen (DO) and nitrite.
Article Details
Tài liệu tham khảo
Abdul, M. K. N., Fitri, A., Wan Mohtar, W. H. M., Wan, M. J. W. S., Zuhairi, N. Z., & Kamarudin, M. K. A. (2021). A study of spatial and water quality index during dry and rainy seasons at Kelantan River Basin, Peninsular Malaysia. Arabian Journal of Geosciences 14(2), 1-19. https://doi.org/10.1007/s12517-020-06382-8.
Adetunji, C. O., Anani, O. A., Olugbemi, O. T., Hefft, D. I., Wilson, N., & Olayinka, A. S. (2022). Chapter 31 - Toward the design of an intelligent system for enhancing salt water shrimp production using fuzzy logic. In Abraham, A., Dash, S., Rodrigues, J. J. P. C., Acharya, B., & Pani, S. K. (Eds.). AI, Edge and IoT-based smart agriculture (533-541). Massachusetts, USA: Academic Press. https://doi.org/10.1016/B978-0-12-823694-9.00005-0.
Amalia, R., Rejeki, S., Widowati, L. L., & Ariyati, R. W. (2022). The growth of tiger shrimp (Penaeus monodon) and its dynamics of water quality in integrated culture. Biodiversitas Journal of Biological Diversity 23(1), 593-600. https://doi.org/10.13057/biodiv/d230164.
Anand, P. S., Balasubramanian, C., Christina, L., Kumar, S., Biswas, G., De, D., Ghoshal, T., & Vijayan, K. (2019). Substrate based black tiger shrimp, Penaeus monodon culture: Stocking density, aeration and their effect on growth performance, water quality and periphyton development. Aquaculture 507, 411-418. https://doi.org/10.1016/j.aquaculture.2019.04.031.
Ariadi, H., Azril, M., & Mujtahidah, T. (2023). Water quality fluctuations in shrimp ponds during dry and rainy seasons. Croatian Journal of Fisheries 81(3), 127-137. https://doi.org/10.2478/cjf-2023-0014.
Ariadi, H., Fadjar, M., & Mahmudi, M. (2019). The relationships between water quality parameters and the growth rate of white shrimp (Litopenaeus vannamei) in intensive ponds. Aquaculture, Aquarium, Conservation and Legislation 12(6), 2103-2116.
Atikah, S. K., & Hasibuan, M. S. (2023). Litopenaeus Vannamei shrimp pond water temperature and PH monitoring system using IoT-based sugeno fuzzy method. Jurnal Info Sains: Informatika dan Sains 13(02), 393-398.
Biao, X., Ding, H. Z., & Wang, R. X. (2004). Impact of the intensive shrimp farming on the water quality of the adjacent coastal creeks from Eastern China. Marine Pollution Bulletin 48(5-6), 543-553. https://doi.org/10.1016/j.marpolbul.2003.10.006.
Boyd, C. E. (2017). Chapter 6 - General Relationship Between Water Quality and Aquaculture Performance in Ponds. In Jeney, G. (Ed.). Fish Diseases (147-166). New York, USA: Academic Press. https://doi.org/10.1016/B978-0-12-804564-0.00006-5.
Boyd, C. E. (2016). What causes alkalinity changes in aquaculture waters? Global seafood alliance’s. Retrieved December 26, 2023, from https://www.globalseafood.org/advocate/what-causesalkalinity-changes-in-aquaculture-waters/.
Boyd, C. E., & Tucker, C. S. (2012). Pond aquaculture water quality management (1st ed.). Berlin, Germany: Springer Science and Business Media. https://doi.org/10.1007/978-1-4615-5407-3.
Boyd, C. E., Tucker, C. S., & Somridhivej, B. (2016). Alkalinity and hardness: Critical but elusive concepts in aquaculture. Journal of The World Aquaculture Society 47(1), 6-41. https://doi.org/10.1111/jwas.12241.
Cao, J. W., Huan, J., Liu, C., Qin, L. Y., & Wu, F. (2019). A combined model of dissolved oxygen prediction in the pond based on multiple-factor analysis and multi-scale feature extraction. Aquacultural Engineering 84, 50-59. https://doi.org/10.1016/j.aquaeng.2018.12.003.
Chen, Z., Chang, Q. Z., Zhang, L., Jiang, L. Y., Ge, X. H., Song, F. X., Chen, B. S., Zhao, Z. F., & Li, J. (2019). Effects of water recirculation rate on the microbial community and water quality in relation to the growth and survival of white shrimp (Litopenaeus vannamei). BMC Microbiology 19(1), 192. https://doi.org/10.1186/s12866-019-1564-x.
Esparza-Leal, H. M., Ponce-Palafox, J. T., ÁlvarezRuiz, P., López-Álvarez, E. S., VázquezMontoya, N., López-Espinoza, M., Mejia, M. M., Gómez-Peraza, R. L., & Nava-Perez, E. (2020). Effect of stocking density and water exchange on performance and stress tolerance to low and high salinity by Litopenaeus vannamei postlarvae reared with biofloc in intensive nursery phase. Aquaculture International 28, 1473-1483. https://doi.org/10.1007/s10499-020-00535-y.
Ferreira, N., Bonetti, C., & Seiffert, W. (2011). Hydrological and water quality indices as management tools in marine shrimp culture. Aquaculture 318(3-4), 425-433. https://doi.org/10.1016/j.aquaculture.2011.05.045.
Ge, Q. Q., Wang, J. J., Li, T. J., & Li, J. (2023). Effect of high alkalinity on shrimp gills: Histopathological alternations and cell specific responses. Ecotoxicology and Environmental Safety 256, 114902. https://doi.org/10.1016/j.ecoenv.2023.114902.
Guerrero-galván, S. R., Páez-osuna, F., Ruiz-fernández, A. C., & Espinoza-Angulo, R. (1998). Seasonal variation in the water quality and chlorophyll a of semi-intensive shrimp ponds in a subtropical environment. Hydrobiologia 391(1), 33-45. https://doi.org/10.1023/A:1003590625379.
Hukom, V., Nielsen, R., Asmild, M., & Nielsen, M. (2020). Do aquaculture farmers have an incentive to maintain good water quality? the case of small-scale shrimp farming in Indonesia. Ecological Economics 176(2), 106717. https://doi.org/10.1016/j.ecolecon.2020.106717.
Islam, M. S., Sarker, M. J., Yamamoto, T., Wahab, M. A., & Tanaka, M. (2004). Water and sediment quality, partial mass budget and effluent N loading in coastal brackishwater shrimp farms in Bangladesh. Marine Pollution Bulletin 48(5-6), 471-485. https://doi.org/10.1016/j.marpolbul.2003.08.025.
Jaffer, Y., Saraswathy, R., Ishfaq, M., Antony, J., Bundela, D., & Sharma, P. (2020). Effect of low salinity on the growth and survival of juvenile pacific white shrimp, Penaeus vannamei: A revival. Aquaculture 515(1-4), 734561. https://doi.org/10.1016/j.aquaculture.2019.734561.
Kautsky, N., Rönnbäck, P., Tedengren, M., & Troell, M. (2000). Ecosystem perspectives on management of disease in shrimp pond farming. Aquaculture 191(1-3), 145-161. https://doi.org/10.1016/S0044-8486(00)00424-5.
Khanjani, M. H., Sharifinia, M., & Hajirezaee, S. (2020). Effects of different salinity levels on water quality, growth performance and body composition of Pacific white shrimp (Litopenaeus vannamei Boone, 1931) cultured in a zero water exchange heterotrophic system. Annals of Animal Science 20(4), 1471-1486. https://doi.org/10.2478/aoas-2020-0036.
Kumar, D. (2023). Water quality management of shrimp culture in temporary Ponds. Research Journal of Science and Technology 15(4), 220-224. https://doi.org/10.52711/2349-2988.2023.00038.
Ma, S. N., Wang, H. J., Wang, H. Z., Li, Y., Liu, M., Liang, X. M., Yu, Q., Jeppesen, E., & Søndergaard, M. (2018). High ammonium loading can increase alkaline phosphatase activity and promote sediment phosphorus release: A two-month mesocosm experiment. Water Research 145, 388-397. https://doi.org/10.1016/j.watres.2018.08.043.
Ma, Z., Song, X., Wan, R., & Gao, L. (2013). A modified water quality index for intensive shrimp ponds of Litopenaeus vannamei. Ecological Indicators 24, 287-293. https://doi.org/10.1016/j.ecolind.2012.06.024.
Madenjian, C. (1990). Patterns of oxygen production and consumption in intensively managed marine shrimp ponds. Aquaculture Research 21(4), 407- 417. https://doi.org/10.1111/j.1365-2109.1990.tb00479.x.
Madusari, B. D., Ariadi, H., & Mardhiyana, D. (2022). Effect of the feeding rate practice on the white shrimp (Litopenaeus vannamei) cultivation activities. Aquaculture, Aquarium, Conservation and Legislatio 15(1), 473-479. https://doi.org/10.1111/jwas.12694.
Mahmudi, M., Musa, M., Bunga, A., Wati, N. A., Arsad, S., & Lusiana, E. D. (2022). A water quality evaluation of integrated mangrove aquaculture system for water treatment in super-intensive white leg shrimp pond. Journal of Ecological Engineering 23(4), 287–296. https://doi.org/10.12911/22998993/146746.
Mirzaei, F. S., Ghorbani, R., Hosseini, S. A., Haghighi, F. P., & Saravi, H. N. (2019). Associations between shrimp farming and nitrogen dynamic: A model in the Caspian Sea. Aquaculture 510, 323-328. https://doi.org/10.1016/j.aquaculture.2019.05.070.
Nikolik, G., Sherrard, J., Pan, C., McCraken, C., Sharma, N., & Salinas, G. (2024). Global aquaculture update 1H 2024: The new normal. Retrieved June 6, 2024, from RaboResearch Food and Agribusiness.
Osaka, K. I., Yokoyama, R., Ishibashi, T., & Goto, N. (2022). Effect of dissolved oxygen on nitrogen and phosphorus fluxes from lake sediments and their thresholds based on incubation using a simple and stable dissolved oxygen control method. Limnology and Oceanography: Methods 20(1), 1-14. https://doi.org/10.1002/lom3.10466.
Phan, T. T. C., Vu, H. H., Nguyen, L. T. K., & Doan, D. X. (2022). Evaluation of short-term toxicity of ammonia and nitrite on the survival of whiteleg shrimp, Litopenaeus vannamei juveniles. Israeli Journal of Aquaculture - Bamidgeh 74, 1-10. https://doi.org/10.46989/001c.36831.
Ponce-Palafox, J., Martinez-Palacios, C. A., & Ross, L. G. (1997). The effects of salinity and temperature on the growth and survival rates of juvenile white shrimp, Penaeus vannamei, Boone, 1931. Aquaculture 157(1-2), 107-115. https://doi.org/10.1016/S0044-8486(97)00148-8.
Prapaiwong, N., & Boyd, C. E. (2012). Water temperature in inland, low-salinity shrimp ponds in Alabama. Journal of Applied Aquaculture 24(4), 334-341. https://doi.org/10.1080/10454438.2012.731479.
Reddy, M., & Mounika, K. (2018). Determination and comparative study of water quality parameters in shrimp culture ponds. International Journal for Research in Applied Science and Engineering Technology 6(9), 216-221.
Ren, X., Wang, Q., Shao, H., Xu, Y., Liu, P., & Li, J. (2021). Effects of low temperature on shrimp and crab physiology, behavior, and growth: a review. Frontiers in Marine Science 8, 746177. https://doi.org/10.3389/fmars.2021.746177.
Rozario, A. R., & Devarajan, N. (2021). Monitoring the quality of water in shrimp ponds and forecasting of dissolved oxygen using Fuzzy C means clustering based radial basis function neural networks. Journal of Ambient Intelligence and Humanized Computing 12 4855-4862. https://doi.org/10.1007/s12652-020-01900-8.
Samocha, T. M. (2019). Sustainable biofloc systems for marine shrimp. New York, USA: Academic press. https://doi.org/10.1016/C2018-0-02628-6.
Simbeye, D. S., & Yang, S. F. (2014). Water quality monitoring and control for aquaculture based on wireless sensor networks. Journal of Networks 9(4), 840-849. https://doi.org/10.4304/jnw.9.4.840-849.
Smith, D. M., Burford, M. A., Tabrett, S. J., Irvin, S. J., & Ward, L. (2002). The effect of feeding frequency on water quality and growth of the black tiger shrimp (Penaeus monodon). Aquaculture 207(1), 125-136. https://doi.org/10.1016/S0044-8486(01)00757-8.
Soares, M. P., Jesus, F., Almeida, A. R., Domingues, I., Hayd, L., & Soares, A. M. (2020). Effects of pH and nitrites on the toxicity of a cypermetrinbased pesticide to shrimps. Chemosphere 241, 125089. https://doi.org/10.1016/j.chemosphere.2019.125089.
Srinivas, D., & Venkatrayulu, C. (2023). Water quality management in shrimp aquaculture. Retrieved from January 16, 2024, from https://www.researchgate.net/publication/368535509_Water_Quality_Management_In_Shrimp_Aquaculture_Shrimp_Aquaculture.
Sriyasak, P., Chitmanat, C., Whangchai, N., Promya, J., & Lebel, L. (2015). Effect of water destratification on dissolved oxygen and ammonia in tilapia ponds in Northern Thailand. International Aquatic Research 7(4), 287-299. https://doi.org/10.1007/s40071-15-0113-y.
Supriatna, S., Marsoedi, M., Hariati, A., & Mahmudi, M. (2017). Dissolved oxygen models in intensive culture of whiteleg shrimp, Litopenaeus vannamei, in East Java, Indonesia. Aquaculture, Aquarium, Conservation and Legislation 10(4), 768-778.
Teichert-Coddington, D., Toyofuku, W., Harvin, J., & Rodriguez, R. (1996). Relationships among stocking density, survival and yield in ponds affected by the taura syndrome during wet and dry seasons in honduras. In Egna, H., Goetze, B., Burke, D., McNamara, M., & Clair, D. (Eds.). Thirteenth annual technical report PD/A CRSP from pond dynamic/aquaculture - Collaborative research - Support program (85-94). Oregon, USA: Oregon State University.
Ullman, C., Rhodes, M. A., & Davis, D. A. (2019). Feed management and the use of automatic feeders in the pond production of Pacific white shrimp Litopenaeus vannamei. Aquaculture 498, 44-49. https://doi.org/10.1016/j.aquaculture.2018.08.040.
Valencia-Castañeda, G., Frías-Espericueta, M. G., Vanegas-Pérez, R. C., Chávez-Sánchez, M. C., & Páez-Osuna, F. (2019). Toxicity of ammonia, nitrite and nitrate to Litopenaeus vannamei juveniles in low-salinity water in single and ternary exposure experiments and their environmental implications. Environmental Toxicology and Pharmacology 70, 103193. https://doi.org/10.1016/j.etap.2019.05.002.
Vinatea, L., Gálvez, A. O., Venero, J., Leffler, J., & Browdy, C. (2009). Oxygen consumption of Litopenaeus vannamei juveniles in heterotrophic medium with zero water exchange. Pesquisa Agropecuária Brasileira 44(50), 534-538. https://doi.org/10.1590/S0100-204X2009000500014.
Wafi, A., Ariadi, H., Muqsith, A., Mahmudi, M., & Fadjar, M. (2021). Oxygen consumption of Litopenaeus vannamei in intensive ponds based on the dynamic modeling system. Journal of Aquaculture and Fish Health 10(1), 17-24. https://doi.org/10.20473/jafh.v10i1.18102.
Weldon, A., Davis, D. A., Rhodes, M., Reis, J., Stites, W., & Ito, P. (2021). Feed management of Litopenaeus vannamei in a high density biofloc system. Aquaculture 544, 737074. https://doi.org/10.1016/j.aquaculture.2021.737074.
Wyban, J., Walsh, W. A., & Godin, D. M. (1995). Temperature effects on growth, feeding rate and feed conversion of the Pacific white shrimp (Penaeus vannamei). Aquaculture 138(1-4), 267-279. https://doi.org/10.1016/0044-8486(95)00032-1.