Trần Văn Kha & Ngô Thị Thu Thảo *

* Correspondence: Ngô Thị Thu Thảo (email: thuthao@ctu.edu.vn)

Main Article Content

Tóm tắt

Nghiên cứu được thực hiện nhằm đánh giá ảnh hưởng của mật độ trồng và tỷ lệ thu hoạch đến sinh trưởng và năng suất của cây hẹ nước (Vallisneria spiralis). Thí nghiệm 1 nhằm đánh giá ảnh hưởng của các mật độ trồng khác nhau gồm có ba nghiệm thức mật độ trồng hẹ nước với ba lần lặp lại là: 1) 0,25 kg/m2; 2) 0,50 kg/m2 và 3) 0,75 kg/m2. Kết quả cho thấy tốc độ tăng trưởng (3210 mg/ngày) và tỷ lệ tăng sinh khối (83 g) khi trồng với mật độ 0,50 kg/m2 tương đương với mật độ 0,75 kg/m2 (P > 0,05), tuy nhiên năng suất đạt cao (0,896 kg/m2) khi hẹ được trồng ở mật độ 0,75 kg/m2. Thí nghiệm 2 đánh giá ảnh hưởng của tỷ lệ thu hoạch khác nhau, trong đó có 4 nghiệm thức (tương ứng với 4 tỷ lệ thu hoạch) và cũng được lặp lại 3 lần là: Không thu hoạch và thu 15, 25, 35% tổng sinh khối/lần sau mỗi 15 ngày trồng. Kết quả tỷ lệ thu hoạch 15 và 25% không khác biệt về tăng trưởng và năng suất hẹ thu được (P > 0,05), tuy nhiên với tỷ lệ thu hoạch 35% đã làm giảm rất rõ các chỉ tiêu như tốc độ tăng trưởng, tỷ lệ tăng sinh khối và năng suất của hẹ nước.

Từ khóa: Cây hẹ nước, Mật độ, Năng suất, Sinh trưởng, Tỷ lệ thu hoạch

Article Details

Tài liệu tham khảo

Boyd, C. E. (1998). Water quality in pond for aquaculture. Alabama, USA: Alabama Agricultural Experiment Station - Auburn University.

Boyd, C. E., & Tucker, C. S. (1998). Aquaculture water quality management. Massachusetts, USA: Kluwer Academic Publishers.

Dao, Q. B., Lam, N. N. H., & Ngo, T. D. T. (2013). Water quality variation in the integrated system of intensive culture snakeskin gourami (Trichogaster pectorlis) and water lettuce (Pistia stratiotes). CTU Journal of Science 28, 64-72.

Ebeling, J. M., Timmons, M. B., & Bisogni, J. J. (2006). Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture 257(1-4), 346-358. https://doi.org/10.1016/j.aquaculture.2006.03.019.

Endut, A., Jusoh, A., Ali, N., Nik, W. W., & Hassan, A. (2010). A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system. Bioresource Technology 101(5), 1511-1517.

Enochs, B., Meindl, G., Shidemantle, G., Wuerthner, V., Akerele, D., Bartholomew, A., & Hua, J. (2023). Short and long-term phytoremediation capacity of aquatic plants in Cu-polluted environments. Heliyon 9(1), e12805. https://doi.org/10.1016/j.heliyon.2023.e12805.

Espinosa-Moya, A., Álvarez-González, A., AlbertosAlpuche, P., Guzmán-Mendoza, R., & MartínezYáñez, R. (2018). Growth and development of herbaceous plants in aquaponic systems. Acta Universitaria 28(2), 1-8. http://dx.doi.org/10.15174/au.2018.1387.

Gichana, Z., Meulenbroek, P., Ogello, E., Drexler, S., Zollitsch, W., Liti, D., & Waidbacher, H. (2019). Growth and nutrient removal efficiency of sweet wormwood (Artemisia annua) in a recirculating aquaculture system for Nile tilapia (Oreochromis niloticus). Water 11(5). http://dx.doi.org/10.3390/w11050923.

Irhayyim, T., Fehér, M., Lelesz, J., Bercsényi, M., & Bársony, P. (2020). Nutrient removal efficiency and growth of watercress (Nasturtium officinale) under different harvesting regimes in integrated recirculating aquaponic systems for rearing common carp (Cyprinus carpio L.). Water 12(5), 1419. https://doi.org/10.3390/w12051419.

Jeke, N. N., Zvomuya, F., Cicek, N., Ross, L., & Badiou, P. (2019). Nitrogen and phosphorus phytoextraction by cattail (Typha spp.) during wetland-based phytoremediation of an end of life municipal lagoon. Journal of Environmental Quality 48(1), 24-31. https://doi.org/10.2134/jeq2018.05.0184.

Jinadasa, K. B. S. N., Tanaka, N., Sasikala, S., Werellagama, D. R. I. B., Mowjood, M. I. M., & Ng, W. J. (2008). Impact of harvesting on constructed wetlands performance - A comparison between (Scirpus grossus) and (Typha angustifolia). Journal of Environmental Science and Health Part A 43(6), 664-671. https://doi.org/10.1080/10934520801893808.

Kim, S. Y., & Geary, P. M. (2001). The impact of biomass harvesting on phosphorus uptake by wetland plants. Water Science and Technology 44(11-12), 61-67. https://doi.org/10.2166/wst.2001.0810.

Kyambadde, J., Kansiime, F., & Dalhammar, G. (2005). Nitrogen and phosphorus removal in substratefree pilot constructed wetlands with horizontal surface flow in Uganda. Water, Air and Soil Pollution 165(1), 37-59. https://doi.org/10.1007/s11270-005-4643-6.

Le, K. D., Nguyen, V. N., Nguyen, T. T. L., Pham, Q. N., Brix, H., & Ngo, T. D. T. (2017). Effect of planting density on growth and nitrogen, phosphorus absorption of grass Hymenachne acutigluma. CTU Journal of Science - Special Issue: Environment and Climate Changes (1), 13-21. https://doi.org/10.22144/ctu.jsi.2017.025.

Liu, Y. H., Meng, B. F., Tong, D. Y., & Chi, J. (2014). Effect of plant density on phytoremediation of polycyclic aromatic hydrocarbons contaminated sediments with Vallisneria spiralis. Ecological Engineering 73, 380-385. https://doi.org/10.1016/j.ecoleng.2014.09.084.

Nguyen, K. M., Nguyen, M. C., Phan, M. V., Nguyen, H. T. Q., Phan, S. T., & Nguyen, D. A. (2020). Comparison and assessment of the nutrient removal capacity by reed grass (Phragmites australis L.) and vetiver (Vetiveria zizanioides L.). Science and Technology Development Journal: Natural Sciences 4(2), 441-457. https://doi.org/10.32508/stdjns.v4i2.702.

Pham, N. Q., Truong, P. Q., Nguyen, C. V., & Doan, L. C. (2015). Assessment of removal pollutants ability from wastewater intensive catfish (Pangasianodon hypophthalmus) by constructed wetlands combined water Hyacinth (Eichhornia crassipes). CTU Journal of Science - Special Issue: Environment and Climate Changes, 58-70.

Pinho, S. M., Molinari, D., Mello, G. L., Fitzsimmons, K. M., & Emerenciano, M. G. C. (2017). Effluent from a biofloc technology (BFT) tilapia culture on the aquaponics production of different lettuce varieties. Ecological Engineering Part A 103, 146-153. https://doi.org/10.1016/j.ecoleng.2017.03.009.

Rakocy, J. E., Masser, M. P., & Losordo, T. M. (2006). Recirculating aquaculture tank production systems: Aquaponics integrating fish and plant culture. Southern Regional Aquaculture Center 454.

Sallenave, R. (2016). Important water quality parameters in aquaponics systems. New Mexico, USA: College of Agricultural, Consumer and Environmental Sciences, New Mexico State University.

Shukla, O. P., Rai, U. N., & Dubey, S. (2009). Involvement and interaction of microbial communities in the transformation and stabilization of chromium during the composting of tannery effluent treated biomass of Vallisneria spiralis L. Bioresource Technology 100(7), 2198-2203. https://doi.org/10.1016/j.biortech.2008.10.036.

Sinha, S., Saxena, R., & Singh, S. (2002). Comparative studies on accumulation of Cr from metal solution and tannery effluent under repeated metal exposure by aquatic plants: Its toxic effects. Environmental Monitoring and Assessment 80, 17-31. https://doi.org/10.1023/a:1020357427074.

Somerville, C., Cohen, M., Pantanella, E., Stankus, A., & Lovatelli, A. (2014). Small-scale aquaponic food production: Integrated fish and plant farming (FAO fisheries and aquaculture reports technical paper No. 589). Rome, Italy: Food and Agriculture Organization of The United Nations).

Tian, Z., Zheng, B., Liu, M., & Zhang, Z. (2009). Phragmites australis and Typha orientalis in removal of pollutant in Taihu Lake, China. Journal of Environmental Sciences 21(4), 440-446. https://doi.org/10.1016/s1001-0742(08)62289-5.

Vajpayee, P., Rai, U. N., Ali, M. B., Tripathi, R. D., Yadav, V., Sinha, S., & Singh, S. N. (2001). Chromiuminduced physiologic changes in Vallisneria spiralis L. and its role in phytoremediation of tannery effluent. Bulletin of Environmental Contamination and Toxicology 67(2), 246-256. https://doi.org/10.1007/s001280117.

Verhofstad, M. J. J. M., Poelen, M. V., Van Kempen, M. M. L., Bakker, E. S., & Smolders, A. J. P. (2017). Finding the harvesting frequency to maximize nutrient removal in a constructed wetland dominated by submerged aquatic plants. Ecological Engineering 106, 423-430. https://doi.org/10.1016/j.ecoleng.2017.06.012.