Kha V. Tran , & Thao T. T. Ngo *

* Correspondence: Ngo Thi Thu Thao (email: thuthao@ctu.edu.vn)

Main Article Content

Abstract

This study was conducted to evaluate effects of planting density and harvest rate on the growth and yield of eelgrass (Vallisneria spiralis). Experiment 1 aimed to evaluate the effects of different planting densities including three treatments of eelgrass planting density with three repetitions: 1) 0.25 kg/m2; 2) 0.50 kg/m2 and 3) 0.75 kg/m2. The results showed that the growth rate (3210 mg/day) and increase in biomass (83 g) when planted at a density of 0.50 kg/m2 were similar to those when planted at a density of 0.75 kg/m2 (P > 0,05), however, the yield was high (0.896 kg/m2) when eelgrass was planted at a density of 0.75 kg/m2. Experiment 2 evaluated effects of different harvest rates, including 4 treatments and was also repeated 3 times per each treatment: No harvest and harvest 15, 25, 35% total biomass/time after every 15 days of planting. The results of the 15 and 25% harvest rates did not differ in growth and yield of eelgrass (P > 0.05), however, the 35% harvest rate clearly reduced growth rate, biomass increase and productivity of V. spiralis.

Keywords: Density, Growth, Harvesting rate, Vallisneria spiralis, Yield

Article Details

References

Boyd, C. E. (1998). Water quality in pond for aquaculture. Alabama, USA: Alabama Agricultural Experiment Station - Auburn University.

Boyd, C. E., & Tucker, C. S. (1998). Aquaculture water quality management. Massachusetts, USA: Kluwer Academic Publishers.

Dao, Q. B., Lam, N. N. H., & Ngo, T. D. T. (2013). Water quality variation in the integrated system of intensive culture snakeskin gourami (Trichogaster pectorlis) and water lettuce (Pistia stratiotes). CTU Journal of Science 28, 64-72.

Ebeling, J. M., Timmons, M. B., & Bisogni, J. J. (2006). Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture 257(1-4), 346-358. https://doi.org/10.1016/j.aquaculture.2006.03.019.

Endut, A., Jusoh, A., Ali, N., Nik, W. W., & Hassan, A. (2010). A study on the optimal hydraulic loading rate and plant ratios in recirculation aquaponic system. Bioresource Technology 101(5), 1511-1517.

Enochs, B., Meindl, G., Shidemantle, G., Wuerthner, V., Akerele, D., Bartholomew, A., & Hua, J. (2023). Short and long-term phytoremediation capacity of aquatic plants in Cu-polluted environments. Heliyon 9(1), e12805. https://doi.org/10.1016/j.heliyon.2023.e12805.

Espinosa-Moya, A., Álvarez-González, A., AlbertosAlpuche, P., Guzmán-Mendoza, R., & MartínezYáñez, R. (2018). Growth and development of herbaceous plants in aquaponic systems. Acta Universitaria 28(2), 1-8. http://dx.doi.org/10.15174/au.2018.1387.

Gichana, Z., Meulenbroek, P., Ogello, E., Drexler, S., Zollitsch, W., Liti, D., & Waidbacher, H. (2019). Growth and nutrient removal efficiency of sweet wormwood (Artemisia annua) in a recirculating aquaculture system for Nile tilapia (Oreochromis niloticus). Water 11(5). http://dx.doi.org/10.3390/w11050923.

Irhayyim, T., Fehér, M., Lelesz, J., Bercsényi, M., & Bársony, P. (2020). Nutrient removal efficiency and growth of watercress (Nasturtium officinale) under different harvesting regimes in integrated recirculating aquaponic systems for rearing common carp (Cyprinus carpio L.). Water 12(5), 1419. https://doi.org/10.3390/w12051419.

Jeke, N. N., Zvomuya, F., Cicek, N., Ross, L., & Badiou, P. (2019). Nitrogen and phosphorus phytoextraction by cattail (Typha spp.) during wetland-based phytoremediation of an end of life municipal lagoon. Journal of Environmental Quality 48(1), 24-31. https://doi.org/10.2134/jeq2018.05.0184.

Jinadasa, K. B. S. N., Tanaka, N., Sasikala, S., Werellagama, D. R. I. B., Mowjood, M. I. M., & Ng, W. J. (2008). Impact of harvesting on constructed wetlands performance - A comparison between (Scirpus grossus) and (Typha angustifolia). Journal of Environmental Science and Health Part A 43(6), 664-671. https://doi.org/10.1080/10934520801893808.

Kim, S. Y., & Geary, P. M. (2001). The impact of biomass harvesting on phosphorus uptake by wetland plants. Water Science and Technology 44(11-12), 61-67. https://doi.org/10.2166/wst.2001.0810.

Kyambadde, J., Kansiime, F., & Dalhammar, G. (2005). Nitrogen and phosphorus removal in substratefree pilot constructed wetlands with horizontal surface flow in Uganda. Water, Air and Soil Pollution 165(1), 37-59. https://doi.org/10.1007/s11270-005-4643-6.

Le, K. D., Nguyen, V. N., Nguyen, T. T. L., Pham, Q. N., Brix, H., & Ngo, T. D. T. (2017). Effect of planting density on growth and nitrogen, phosphorus absorption of grass Hymenachne acutigluma. CTU Journal of Science - Special Issue: Environment and Climate Changes (1), 13-21. https://doi.org/10.22144/ctu.jsi.2017.025.

Liu, Y. H., Meng, B. F., Tong, D. Y., & Chi, J. (2014). Effect of plant density on phytoremediation of polycyclic aromatic hydrocarbons contaminated sediments with Vallisneria spiralis. Ecological Engineering 73, 380-385. https://doi.org/10.1016/j.ecoleng.2014.09.084.

Nguyen, K. M., Nguyen, M. C., Phan, M. V., Nguyen, H. T. Q., Phan, S. T., & Nguyen, D. A. (2020). Comparison and assessment of the nutrient removal capacity by reed grass (Phragmites australis L.) and vetiver (Vetiveria zizanioides L.). Science and Technology Development Journal: Natural Sciences 4(2), 441-457. https://doi.org/10.32508/stdjns.v4i2.702.

Pham, N. Q., Truong, P. Q., Nguyen, C. V., & Doan, L. C. (2015). Assessment of removal pollutants ability from wastewater intensive catfish (Pangasianodon hypophthalmus) by constructed wetlands combined water Hyacinth (Eichhornia crassipes). CTU Journal of Science - Special Issue: Environment and Climate Changes, 58-70.

Pinho, S. M., Molinari, D., Mello, G. L., Fitzsimmons, K. M., & Emerenciano, M. G. C. (2017). Effluent from a biofloc technology (BFT) tilapia culture on the aquaponics production of different lettuce varieties. Ecological Engineering Part A 103, 146-153. https://doi.org/10.1016/j.ecoleng.2017.03.009.

Rakocy, J. E., Masser, M. P., & Losordo, T. M. (2006). Recirculating aquaculture tank production systems: Aquaponics integrating fish and plant culture. Southern Regional Aquaculture Center 454.

Sallenave, R. (2016). Important water quality parameters in aquaponics systems. New Mexico, USA: College of Agricultural, Consumer and Environmental Sciences, New Mexico State University.

Shukla, O. P., Rai, U. N., & Dubey, S. (2009). Involvement and interaction of microbial communities in the transformation and stabilization of chromium during the composting of tannery effluent treated biomass of Vallisneria spiralis L. Bioresource Technology 100(7), 2198-2203. https://doi.org/10.1016/j.biortech.2008.10.036.

Sinha, S., Saxena, R., & Singh, S. (2002). Comparative studies on accumulation of Cr from metal solution and tannery effluent under repeated metal exposure by aquatic plants: Its toxic effects. Environmental Monitoring and Assessment 80, 17-31. https://doi.org/10.1023/a:1020357427074.

Somerville, C., Cohen, M., Pantanella, E., Stankus, A., & Lovatelli, A. (2014). Small-scale aquaponic food production: Integrated fish and plant farming (FAO fisheries and aquaculture reports technical paper No. 589). Rome, Italy: Food and Agriculture Organization of The United Nations).

Tian, Z., Zheng, B., Liu, M., & Zhang, Z. (2009). Phragmites australis and Typha orientalis in removal of pollutant in Taihu Lake, China. Journal of Environmental Sciences 21(4), 440-446. https://doi.org/10.1016/s1001-0742(08)62289-5.

Vajpayee, P., Rai, U. N., Ali, M. B., Tripathi, R. D., Yadav, V., Sinha, S., & Singh, S. N. (2001). Chromiuminduced physiologic changes in Vallisneria spiralis L. and its role in phytoremediation of tannery effluent. Bulletin of Environmental Contamination and Toxicology 67(2), 246-256. https://doi.org/10.1007/s001280117.

Verhofstad, M. J. J. M., Poelen, M. V., Van Kempen, M. M. L., Bakker, E. S., & Smolders, A. J. P. (2017). Finding the harvesting frequency to maximize nutrient removal in a constructed wetland dominated by submerged aquatic plants. Ecological Engineering 106, 423-430. https://doi.org/10.1016/j.ecoleng.2017.06.012.