Hanh M. Ho , Ha L. N. Tran , Truc T. T. Tran , Anh T. V. Nguyen , & Ly T. P. Trinh *

* Correspondence: Trinh Thi Phi Ly (email: phily@hcmuaf.edu.vn)

Main Article Content

Abstract

About six million tons of spent coffee grounds are discharged into the environment every year. Spent coffee grounds contain many useful components such as polysaccharides, protein, and bioactive compounds. This research aimed to exploit the important products such as coffee oil, sugar and phenolic compounds from spent coffee grounds, contributing to improve the economic efficiency of the coffee industry and reducing the environmental pollution. Coffee oil was extracted using four different methods including maceration, Soxhlet, ultrasonic-assisted and microwave-assisted extraction. The solid residue from the oil extraction process was hydrolyzed by Cellulast and Viscozyme enzyme. Monosaccharides, total phenolic content, and antioxidant activity in the hydrolysate were measured and evaluated. The results showed that ultrasonic-assisted extraction gave the highest yield of coffee oil of 9.64%; the coffee oil had a density of 0.94 kg/L; the acid value of 7.80 mg KOH/g; saponification value of 16.33 mg KOH/g and ester value of 8.57 mg KOH/g. The highest enzymatic hydrolysis yield was obtained by using 2% Viscozyme within 24 h. The spent coffee ground hydrolysate contained 2016.4 mg/L reducing sugars including 464.2 mg/L mannose; 947.1 mg/L glucose and 256.3 mg/L galactose; 401.70 mg/L total phenolic content and showed the antioxidant activity of 564.3 mg/L ascorbic acid equivalent. This study demonstrated a feasible process to obtain 96 kg of coffee oil, 48 kg of sugar and 10 kg of phenolic compounds from 1 ton of dry spent coffee grounds.

Keywords: Bioactive compounds, Coffee oil, Enzymatic hydrolysis, Mannose, Spent coffee grounds

Article Details

References

Al-Hamamre, Z., Foerster, S., Hartmann, F., Kroger, M., & Kaltschmitt, M. (2012). Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing. Fuel 96, 70-76. https://doi.org/10.1016/j.fuel.2012.01.023

Anuar, K., Zin, M., Juhari, N. H., Hasmadi, M., Smedley, K. L., & Zainol, M. K. (2020). Influence of pectinase–assisted extraction time on the antioxidant capacity of Spent Coffee Ground (SCG). Food Research 4(6), 2054-2061. https://doi.org/10.26656/fr.2017.4(6).270

Bart, J. C. J., Palmeri, N., & Cavallaro, S. (2010). Emerging new energy crops for biodiesel production. In Bart, J. C. J., Palmeri, N., & Cavallaro, S. (Eds.). Biodiesel Science and Technology (226-284). Sawston, Cambridge: Woodhead Publishing. https://doi.org/10.1533/9781845697761.226

Bhaturiwala, A. R., & Modi, H. A. (2020). Extraction of oligosaccharides and phenolic compounds by roasting pretreatment and enzymatic hydrolysis from spent coffee ground. Journal of Applied Biology & Biotechnology 8(4), 75-81. https://doi.org/10.7324/JABB.2020.80412

Chai, W. Y., Krishnan, U. G., Sabaratnam, V., & Tan, J. B. L. (2021). Assessment of coffee waste in formulation of substrate for oyster mushrooms Pleurotus pulmonarius and Pleurotus floridanus. Future Foods 4, 100075. https://doi.org/10.1016/j.fufo.2021.100075

Chiyanzu, I., Brienzo, M., García‐Aparicio, M., Agudelo, R., & Gorgens, J. (2014). Spent coffee ground mass solubilisation by steam explosion and enzymatic hydrolysis. Journal of Chemical Technology & Biotechnology 90(3)449-458. https://doi.org/10.1002/jctb.4313

Choi, B., & Koh, E. (2017). Spent coffee as a rich source of antioxidative compounds. Food Science and Biotechnology 26, 921-927. https://doi.org/10.1007/s10068-017-0144-9

Cruz, R., Cardoso, M. M., Fernandes, L., Oliveira, M., Mendes, E., Baptista, P., Morais, S., & Casal, S. (2012). Espresso coffee residues: A valuable source of unextracted compounds. Journal of Agricultural and Food Chemistry 60(32), 7777-7784. https://doi.org/10.1021/jf3018854

de Lonlay, P., & Seta, N. (2009). The clinical spectrum of phosphomannose isomerase deficiency, with an evaluation of mannose treatment for CDG-Ib. Biochimica Biophysica Acta 1792(9), 841-843. https://doi.org/10.1016/j.bbadis.2008.11.012

Efthymiopoulos, I., Hellier, P., Ladommatos, N., Kay, A., & Mills-Lamptey, B. (2019). Effect of solvent extraction parameters on the recovery of oil from spent coffee grounds for biofuel production. Waste Biomass Valorization 10(2), 253-264. https://doi.org/10.1007/s12649-017-0061-4

Goh, B. H. H., Ong, H. C., Chong, C. T., Chen, W.-H., Leong, K. Y., Tan, S. X., & Lee, X. J. (2020). Ultrasonic assisted oil extraction and biodiesel synthesis of Spent Coffee Ground. Fuel 261, 116121. https://doi.org/10.1016/j.fuel.2019.116121

Gonzalez, P. S., O’Prey, J., Cardaci, S., Barthet, V. J. A., Sakamaki, J., Beaumatin, F., Roseweir, A., Gay, D. M., Mackay, G., Malviya, G., Kania, E., Ritchie, S., Baudot, A. D., Zunino, B., Mrowinska, A., Nixon, C., Ennis, D., Holey, A., Millan, D., McNeish, I. A., Sansom, O. J., Edwards, J., & Ryan, K. M. (2018). Mannose impairs tumour growth and enhances chemotherapy. Nature 563(7733), 719-723. https://doi.org/10.1038/s41586-018-0729-3

Hanif, M., Harahap, F. A. U., Heru, H., Darni, Y., & Ginting, S. Br. (2019). Extraction and characterization of coffee oil from instant-coffee waste. Jurnal Bahan Alam Terbarukan 8(1), 59-64. https://doi.org/10.15294/jbat.v8i1.18619

Hibbert, S., Welham, K., & Zein, S. H. (2019). An innovative method of extraction of coffee oil using an advanced microwave system: in comparison with conventional Soxhlet extraction method. SN Applied Sciences 1, 1467. https://doi.org/10.1007/s42452-019-1457-5

Hu, X., Shi, Y., Zhang, P., Miao, M., Zhang, T., & Jiang, B. (2016). d-Mannose: Properties, Production, and Applications: An Overview. Comprehensive Reviews in Food Science and Food Safety, 15. doi: 10.1111/1541-4337.12211

Istiningrum, R. B., Saepuloh, A., Jannah, W., & Aji, D. W. (2017). Measurement uncertainty of ester number, acid number and patchouli alcohol of patchouli oil produced in Yogyakarta 1823(1), 020080. https://doi.org/10.1063/1.4978153

Jenkins, R. W., Stageman, N. E., Fortune, C. M., & Chuck, C. J. (2014). Effect of the type of bean, processing, and geographical location on the biodiesel produced from waste coffee grounds. {Energy Fuels} 28(2), 1166-1174. https://doi.org/10.1021/ef4022976

Jooste, T., Garcia-Aparicio, M. P., Brienzo, M., van Zyl, W. H., & Gorgens, J. F. (2013). Enzymatic hydrolysis of spent coffee ground. {Applied Biochemistry Biotechnology} 169(8), 2248-2262. https://doi.org/10.1007/s12010-013-0134-1

Kyriakides, R., Jones, P., & Somani, B. K. (2020). Role of D-mannose in the prevention of recurrent urinary tract infections: evidence from a systematic review of the literature. {European Urology Focus} 7(5), 1166-1169. https://doi.org/10.1016/j.euf.2020.09.004

Mata, T. M., Martins, A. A., & Caetano, N. S. (2018). Bio-refinery approach for spent coffee grounds valorization. {Bioresource Technology} 247, 1077-1084. https://doi.org/10.1016/j.biortech.2017.09.106

Mussatto, S. I., Machado, E. M. S., Martins, S., & Teixeira, J. A. (2011). Production, composition, and application of coffee and its industrial residues. {Food and Bioprocess Technology} 4(5), 661. https://doi.org/10.1007/s11947-011-0565-z

Nguyen, Q. A., Cho, E. J., Lee, D. S., & Bae, H. J. (2019). Development of an advanced integrative process to create valuable biosugars including manno-oligosaccharides and mannose from spent coffee grounds. {Bioresource Technology} 272, 209-216. https://doi.org/10.1016/j.biortech.2018.10.018

Obruca, S., Benesova, P., Petrik, S., Oborna, J., Prikryl, R., & Marova, I. (2014). Production of polyhydroxyalkanoates using hydrolysate of spent coffee grounds. {Process Biochemistry} 49(9), 1409-1414. https://doi.org/10.1016/j.procbio.2014.05.013

Osorio-Arias, J., Delgado-Arias, S., Cano, L., Zapata, S., Quintero, M., Nuñez, H., Ramírez, C., Simpson, R. & Vega-Castro, O. (2020). Sustainable management and valorization of spent coffee grounds through the optimization of thin layer hot air-drying process. {Waste and Biomass Valorization} 11, 5015-5026. https://doi.org/10.1007/s12649-019-00793-9

Passos, C. P., Rudnitskaya, A., Neves, J. M. M. G. C., Lopes, G. R., Evtuguin, D. V., & Coimbra, M. A. (2019). Structural features of spent coffee grounds water- soluble polysaccharides: Towards tailor-made microwave assisted extractions. {Carbohydrate Polymers} 214, 53-61. https://doi.org/10.1016/j.carbpol.2019.02.094

Puri, M., Sharma, D., & Barrow, C. J. (2012). Enzyme-assisted extraction of bioactives from plants. {Trends in Biotechnology} 30(1), 37-44. https://doi.org/10.1016/j.tibtech.2011.06.014

Rocha, M. V. P., de Matos, L. J. B. L., de Lima, L. P., da Silva Figueiredo, P. M., Lucena, I. L., Fernandes, F. A. N., & Gonçalves, L. R. B. (2014). Ultrasound-assisted production of biodiesel and ethanol from spent coffee grounds. {Bioresource Technology} 167, 343-348. https://doi.org/10.1016/j.biortech.2014.06.032

Rochín Medina, J., Ramirez, K., Rangel-Peraza, J., & Bustos-Terrones, Y. A. (2018). Increase of content and bioactivity of total phenolic compounds from spent coffee grounds through solid state fermentation by Bacillus clausii. {Journal of Food Science and Technology} 55. doi: 10.1007/s13197-017-2998-5

Seo, H. S., & Park, B. H. (2019). Phenolic compound extraction from spent coffee grounds for antioxidant recovery. {Korean Journal of Chemical Engineering} 36(2), 186-190. https://doi.org/10.1007/s11814-018-0208-4

Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2005). Determination of ash in biomass. {Labolatory Analytical Procedure - National Renewable Energy Laboratory}.

Trinh, T. P. L., Choi Y. S. & Bae, H. J. (2018). Production of phenolic compounds and biosugars from flower resources via several extraction processes. {Industrial Crops and Products} 125, 261-268. https://doi.org/10.1016/j.indcrop.2018.09.008

Woldesenbet, A. G., Woldeyes, B., & Chandravanshi, B. S. (2016). Bio-ethanol production from wet coffee processing waste in Ethiopia. {SpringerPlus} 5(1), 1903-1903. doi: 10.1186/s40064-016-3600-8

Wu, H., Zhang, W., & Mu, W. (2019). Recent studies on the biological production of D-mannose. {Applied Microbiology and Biotechnology} 103, 8753-8761. https://doi.org/10.1007/s00253-019-10151-3.