Hoang P. T. Truong * , Thang T. Q. Vo , Ha T. T. Tran , Toan S. Vo , Ha T. Luong , & Tho P. Le

* Correspondence: Truong Phuoc Thien Hoang (email: hoangtp@hcmuaf.edu.vn)

Main Article Content


Edible bird's nest (EBN) crumbs are the by-product of the bird's nest industry. Despite having lower economic value compared to the original material, EBN crumbs still maintain high protein and carbohydrate content. Therefore, this study aimed to determine the optimal hydrolysis condition for EBN crumbs using protease to achieve the maximum degree of hydrolysis (DH). Plackett Burman design was employed to identify the important factors. The results showed that enzyme loading, temperature and hydrolysis time had the strongest effect on the DH. These factors were subsequently subjected to the optimization study using central composite design (CCD) of response surface methodology (RSM). The optimized conditions for the enzymatic hydrolysis of EBN crumbs were at an enzyme loading of 4%, temperature of 51ºC, and hydrolysis time of 90 min. The experimental DH obtained at the optimized condition (63.5%) was close to the predicted DH (64.1%). The enzymatic hydrolysate prepared at the optimal condition showed relatively high amino acid concentration (151.6 ± 1.29 µg/mL) and radical scavenging activity (64.97 ± 0.79%) compared to the boiled sample with values of only 50.1 ± 2.43 µg/mL and 18.36 ± 0.17%, respectively. The resultant hydrolysate had no effect on some of the microorganisms employed in this study. The EBN crumbs hydrolysate inhibited tyrosinase activity with an IC50 of 70.22 µg/mL, greater than that of boiled EBN (IC50= 108.9 µg/mL). The results indicated that the EBN crumbs hydrolysate could be further applied in the cosmetic industry as a rich source of nutrients and bioactive compounds for the formulation of beauty products.

Keywords: Degree of hydrolysis, Edible bird’s nest crumbs, Enzymatic hydrolysis, Optimization, Protease

Article Details


Ali, A. A. M., Noor, H. S. M., Chong, P. K., Babji, A. S., & Lim, S. J. (2019). Comparison of amino acids profile and antioxidant activities between edible bird nest and chicken egg. Malaysian Applied Biology 48(2), 63-69.

Amiza, M. A., Khuzma, D., & Kee, C. H. (2019a). Optimization of enzymatic hydrolysis conditions of edible bird’s nest using Protamex to obtain maximum degree of hydrolysis. Asian Journal of Agriculture and Biology 7(1), 1-9.

Amiza, M. A., Oon, X. X., & Norizah, M. S. (2019b). Optimization of enzymatic hydrolysis conditions on the degree of hydrolysis of edible bird’s nest using Alcalase and nutritional composition of the hydrolysate. Food Research 3(5), 570-580. https://doi.org/10.26656/fr.2017.3(5).120.

Arihara, K. (2006). Functional properties of bioactive peptides derived from meat proteins. Advanced Technology for Meat Processing, 245-273. https://doi.org/10.1201/9781420017311.ch10.

Bezerra, M. A., Santelli, R. E., Olivier, E. P., Villa, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta 76(5), 965-977. https://doi.org/10.1016/j.talanta.2008.05.019.

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT-Food Science and Technology 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5.

Bui, H. T. (2020). Factors affecting the hydrolysis rate of Khanh Hoa salanganes nest. Vietnam Journal of Science, Technology and Engineering 8A, 36-38.

Chan, G. K. L., Wrong, Z. C. F., Lam, Y. C. L., Cheng, L. K. W., Zang, L. M., Lin, H., Dong, T. T., & Tsim, K. W. K. (2015). Edible bird’s nest, an Asian health food supplement, possesses skin lightening activities: Identification of N-Acetylneuraminic acid as active ingredient. Journal of Cosmetics, Dermatological Sciences and Applications 5(4), 262-274. https://doi.org/10.4236/jcdsa.2015.54032.

Din, L. C. (2020). Research on skin care materials from bird's nest waste products (Unpublished bachelor’s thesis). Nong Lam University, Ho Chi Minh City, Vietnam.

Hamzah, Z., Ibrahim, N. H., Sarojini, J., Hussin, K., Hashim, O., & Le, B. B. (2013). Nutritional properties of edible bird nest. Journal of Asian Scientific Research 3(6), 600-607.

Jun, S. Y., Park, P. J., Jung, W. K., & Kim, S. K. (2004). Purification and characterization of an antioxidative peptide from enzymatic hydrolysate of yellowfin sole (Limanda aspera) frame protein. European Food Research and Technology 219, 20-26. https://doi.org/10.1007/s00217-004-0882-9.

Khushairay, E. S. I., Ayub, M. K., & Babji, A. S. (2014). Effect of enzymatic hydrolysis of pancreatin and alcalase enzyme on some properties of edible bird’s nest hydrolysate. AIP Conference Proceedings 1614(1), 427-432. https://doi.org/10.1063/1.4895235.

Le, H. H., Luong, B. C., Nguyen, D. X., & Nguyen, H. T. (2017). Antioxidant ability and inhibition of tyrosinase enzyme of bird's nest. Vietnam Journal of Science and Technology 10, 28-30.

Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry 193(1), 265-275. https://doi.org/10.1016/S0021-9258(19)52451-6.

Ma, F., & Liu, D. (2012). Sketch of the edible bird’s nest and its importance bioactivities. Food Research International 48(2), 559-567. https://doi.org/10.1016/j.foodres.2012.06.001.

Mackie, I. M. (1982). Fish protein hydrolysates. Process Biochemistry 17(1), 26-28, 31.

Marcone, M. F. (2005). Characterization of the edible bird’s nest the “caviar of the east”. Food Research International 38(10), 1125-1134. https://doi.org/10.1016/j.foodres.2005.02.008.

Morais, H. A., Silvestre, M. P. C., Siva, V. D. M., Silva, M. R., Silva, A. C. S. E., & Silveira, J. N. (2013). Correlation between the degree of hydrolysis and the peptide profile of whey protein concentrate hydrolysates: Effect of the enzyme type and reaction time. American Journal of Food Technology 8(1), 1-16. https://doi.org/10.3923/ajft.2013.1.16.

Muhammad, N. N., Babji, A. S., & Ayub, M. K. (2015). Antioxidative activities of hydrolysates from edible birds’nest using enzymatic hydrolysis. AIP Conference Proceedings 1678(1). https://doi.org/10.1063/1.4931317.

Muhammad, N. N., Babji, A. S., Ayub, M. K., & Nur’Aliah, D. (2017). Effect of enzymatic hydrolysis on antioxidant capacity of cave edible bird’s nests hydrolysate. International Journal of ChemTech Research 10(2), 1100-1107.

Nurfatin, M. H., Ibrahim, E. S. K., Daud, N. A., Kasim, Z. M., Babji, A. S., & Ayob, M. K. (2016). Effect of enzymatic hydrolysis on angiotensin converting enzyme (ACE) inhibitory activity in swiftlet saliva. International Food Research Journal 23(1), 141-146.

Ovissipour, M., Benjakul, S., Safari, R., & Motamedzadegan, A. (2010). Fish protein hydrolysates production from yellowfin tuna Thunnusalbacares head using alcalase and protamex. International Aquatic Research 2(2), 87-95.

Silva, V. M., Park, K. J., & Hubinger, M. D. (2010). Optimization of the enzymatic hydrolysis of mussel meat. Journal of Food Science 75(1), 36-42. https://doi.org/10.1111/j.1750-3841.2009.01414.x

Than, L. T. M., Hoang, S. L., & Huynh, A. M. M. (2019). Nutritional content of Vietnamese edible bird’s nest from selected regions. European Journal of Nutrition and Food Safety 9(1), 66-71.

Vanitha, M., & Soundhari, C. (2017). Isolation and characterisation of mushroom tyrosinase and screening of herbal extracts for anti tyrosinase activity. International Journal of Chemtech Research 10(9), 1156-1167.

Wu, H. C., Chen, H. M., & Shiau, C. Y. (2003). Free amino acids and peptides as related to antioxidant properties in protein hydrolysates of mackerel (Scomberaustriasicus). Food Research International 36(9-10), 949-957. https://doi.org/10.1016/S0963-9969(03)00104-2.

Zainab, H., Sarojini, J., Othman, H., & Hussin, K. (2015). Waste to wealth for the edible bird nest industry. Applied Mechanics and Materials 754-755, 990-997. https://doi.org/10.4028/www.scientific.net/AMM.754-755.990.