Hau T. T. Nguyen , Giang T. K. Ho , Huong T. Nguyen , Sang M. Nguyen , Suong T. T. Nguyen , Dao N. Duy , & Viet B. Nguyen *

* Correspondence: Nguyen Bao Viet (email: nbviet@hcmuaf.edu.vn)

Main Article Content

Abstract

Saltwater intrusion is a common phenomenon in Southern Vietnam, but salinization is becoming more serious due to the rising sea level related to climate change. Among potential methods for water desalination, the application of halophytic microalgae is gaining high interest. This study investigated the effect of Chlorella vulgaris (C. vulgaris) microalgae on reducing water salinity at different media (Bold Basal Medium and Sea Salt Medium) and in different salt concentrations (1 - 30 g/L). The results indicated that C. vulgaris microalgae had good growth in all mediums used and contributed to lowering the salt content from 20% to 40% after 15 days of cultivation.

Keywords: Bold basal medium, C. vulgaris, Sea salt medium, Water desalination

Article Details

References

Abdel-Raouf, N., Al-Homaidan, A. A., & Ibraheem, I. B. M. (2012). Microalgae and wastewater treatment. Saudi Journal of Biological Sciences 19(3), 257-275. https://doi.org/10.1016/j.sjbs.2012.04.005.

Amezaga, J. M., Amtmann, A., Biggs, C. A., Bond, T., Gandy, C. J., Honsbein, A., Karunakaran, E., Lawton, L., Madsen, M. A., Minas, K., & Templeton, M. R. (2014). Biodesalination: A case study for applications of photosynthetic bacteria in water treatment. Plant Physiology 164(4), 1661-1676. https://doi.org/10.1104/pp.113.233973.

Andersen, R. A. (2004). Algal culturing techniques (1st ed.). New York, USA: Elsevier Academic Press.

Arora, N., Laurens, L. M. L., Sweeney, N., Pruthi, V., Poluri, K. M., & Pienkos, P. T. (2019). Elucidating the unique physiological responses of halotolerant Scenedesmus sp. cultivated in sea water for biofuel production. Algal Research 37, 260-268. https://doi.org/10.1016/j.algal.2018.12.003.

Askari, H., Edqvist, J., Hajheidari, M., Kafi, M., & Salekdeh, G. H. (2006). Effects of salinity levels on proteome of Suaeda aegyptiaca leaves. Proteomics 6(8), 2542-2554. https://doi.org/10.1002/pmic.200500328.

Barahoei, M., Hatamipour, M. S., & Afsharzadeh, S. (2021). Direct brackish water desalination using chlorella vulgaris microalgae. Process Safety and Environmental Protection 148, 237-248. https://doi.org/10.1016/j.psep.2020.10.006.

Cheeseman, J. M. (1988). Mechanisms of salinity tolerance in plants. Plant Physiology 87(3), 547-550. https://doi.org/10.1104/pp.87.3.547.

Delrue, F., Álvarez-Díaz, P. D., Fon-Sing, S., Fleury, G., & Sassi, J. F. (2016). The environmental biorefinery: Using microalgae to remediate wastewater, a win-win paradigm. Energies 9(3), 132. https://doi.org/10.3390/en9030132.

Figler, A., B-Béres, V., Dobronoki, D., Márton, K., Nagy, S. A., & Bácsi, I. (2019). Salt tolerance and desalination abilities of nine common green microalgae isolates. Water 11 (12), 2527. https://doi.org/10.3390/w11122527.

Gan, X., Shen, G., Xin, B., & Li, M. (2016). Simultaneous biological desalination and lipid production by Scenedesmus obliquus cultured with brackish water. Desalination 400, 1-6. https://doi.org/10.1016/j.desal.2016.09.012.

Hiremath, S., & Mathad, P. (2010). Impact of salinity on the physiological and biochemical traits of chlorella vulgaris beijerinck. Journal of Algal Biomass Utilization 1(2), 51-59.

Hoque, M. A., Okuma, E., Banu, M. N. A., Nakamura, Y., Shimoishi, Y., & Murata, Y. (2007). Exogenous proline mitigates the detrimental effects of salt stress more than exogenous betaine by increasing antioxidant enzyme activities. Journal Plant Physiology 164(5), 553-561. https://doi.org/10.1016/j.jplph.2006.03.010.

Kumari, A., Das, P., Parida, A. K., & Agarwal, P. K. (2015). Proteomics, metabolomics, andionomics perspectives of salinity tolerance in halophytes. Frontiers in Plant Science 6, 537. https://doi.org/10.3389/fpls.2015.00537.

Safi, C., Zebib, B., Merah, O., Pontalier, P., & Vaca-Garcia, C. (2014). Morphology, composition, production, processing and applications of Chlorella vulgaris: A review. Renewable and Sustainable Energy Review 35, 265-278. https://doi.org/10.1016/j.rser.2014.04.007.

Sahle-Demessie, E., Hassan, A. A., & Badawy, A. E. (2019). Bio-desalination of brackish and seawater using halophytic algae. Desalination 465, 104-113. https://doi.org/10.1016/j.desal.2019.05.002.

Wang, X. C., Fan, P., Song, H., Chen, X., Li, X., & Li, Y. (2013). Comparative proteomic analysis of differentially expressed proteins in shoots of Salicornia europaea under different salinity. Journal of Proteome Research 8(7), 3331-3345. https://doi.org/10.1021/pr801083a.

Yensen, N. P. (2006). Halophyte uses for the twenty-first century. In Khan, M. A., & Weber, D. J. (Eds.). Ecophysiology of high salinity tolerant plants. Tasks for vegetation science (vol 40, 367-396). https://doi.org/10.1007/1-4020-4018-0_23.

Zhu, J. K. (2001). Plant salt tolerance. Trend in Plant Science 6(2), 66-71. https://doi.org/10.1016/S1360-1385(00)01838-0.