Binh Q. Truong *

* Correspondence: Truong Quang Binh (email: tqbinh@hcmuaf.edu.vn)

Main Article Content

Abstract

High-pressure processing is an emerging technology in the food industry. The application of high-pressure processing has shown a huge potential for improving the physicochemical, microbial, and sensory quality of aquatic products. The inactivation of microorganisms and autolytic enzymes by high-pressure processing results in an extension of fish muscles’ shelf life. High pressure inhibits the formation of putrefactive compounds and maintains the hardness of fish muscles, resulting in higher sensory quality compared to untreated muscle over storage time. However, the drawbacks such as discoloration, protein denaturation, and lipid oxidation could limit the application of high pressure on fish muscles. Besides, the gel formed by pressure-induction or high-pressure freezing/thawing of aquatic is being investigated intensively to obtain the benefits of high-pressure processing on aquatic products.

Keywords: Aquatic products, Freezing, Gelation, High pressure processing, Lipid oxidation

Article Details

References

Boonyaratanakornkit, B. B., Park, C. B., & Clark, D. S. (2002). Pressure effects on intra- and intermolecular interactions within proteins. Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology 1595(1-2), 235-249. https://doi.org/10.1016/S0167-4838(01)00347-8

Buckow, R. (2006). Pressure and temperature effects on the enzymatic conversion of biopolymers. (Unpublished doctoral dissertation). Technische Universität Berlin, Berlin, German.

Buckow, R., & Bull, M. (2013). Advanced food preservation technologies. Microbiology Australia 34(2), 108-111. https://doi.org/10.1071/MA13037

Buckow, R., Sikes, A., & Tume, R. (2013). Effect of high pressure on physicochemical properties of meat. Critical Reviews in Food Science and Nutrition 53(7), 770-786. https://doi.org/10.1080/10408398.2011.560296

Buzrul, S., Alpas, H., Largeteau, A., Bozoglu, F., & Demazeau, G. (2008). Compression heating of selected pressure transmitting fluids and liquid foods during high hydrostatic pressure treatment. Journal of Food Engineering 85(3), 466-472. https://doi.org/10.1016/j.jfoodeng.2007.08.014

Farkas, D. F., & Hoover, D. G. (2000) High pressure processing. Food Science 65(Suppl 8), 47-64. https://doi.org/10.1111/j.1750-3841.2000.tb00618.x

Heinz, V., & Buckow, R. (2010). Food preservation by high pressure. Journal für Verbraucherschutz und Lebensmittelsicherheit 5(1), 73-81. https://doi.org/10.1007/s00003-009-0311-x

Hendrickx, M. E. G., Knorr, D., Ludikhuyze, L., Loey, A., & Heinz, V. (2001). Ultra high pressure treaments of foods. Springer New York: New York. https://doi.org/10.1007/978-1-4615-0723-9

Hite, B. H. (1899). The effect of pressure in the preservation of milk: a preliminary report. West Virginia University. Agricultural Experiment Station, Bulletin (58), 15-35. https://doi.org/10.33915/agnic.58

Hwang, J. S., Lai, K. M., & Hsu, K. C. (2007). Changes in textural and rheological properties of gels from tilapia muscle proteins induced by high pressure and setting. Food Chemistry 104(2), 746-753. https://doi.org/10.1016/j.foodchem.2006.11.075

Indrawati, Loey, A., Smout, C., & Hendrickx, M. (2003). High hydrostatic pressure technology in food preservation. In Zeuthen, P., & Bøgh-Sørensen, L. (Eds.). Food Preservation Techniques (pp. 613). New York, USA: Woodhead Publishing.

Iwasaki, T., Washio, M., Yamamoto, K., & Nakamura, K. (2005). Rheological and morphological comparison of thermal and hydrostatic pressure-induced filamentous myosin gels. Journal of Food Science 70(7), e432-e436. https://doi.org/10.1111/j.1365-2621.2005.tb11472.x

Jay, J. M., Loessner, M. J., & Golden, D. A. (2005). Modern food microbiology (7th ed). New York: Springer. https://doi.org/10.1007/b100840

Jiménez Colmenero, F. (2002). Muscle protein gelation by combined use of high pressure/temperature. Trends in Food Science & Technology 13(1), 22-30. https://doi.org/10.1016/S0924-2244(02)00024-9

Knorr, D., Heinz, V., & Buckow, R. (2006). High pressure application for food biopolymers. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics 1764(3), 619-631. https://doi.org/10.1016/j.bbapap.2006.01.017

LeBail, A., Chevalier, D., Mussa, D. M., & Ghoul, M. (2002). High pressure freezing and thawing of foods: a review. International Journal of Refrigeration 25(5), 504-513. https://doi.org/10.1016/S0140-7007(01)00030-5

Mozhaev, V. V., Heremans, K., Frank, J., Masson, P., & Balny, C. (1996). High pressure effects on protein structure and function. Proteins: Structure, Function, and Bioinformatics 24(1), 81-91. https://doi.org/10.1002/(SICI)1097-0134(199601)24:1<81::AID-PROT6>3.0.CO;2-R

Ohshima, T., Ushio, H., & Koizumi, C. (1993). High-pressure processing of fish and fish products. Trends in Food Science & Technology 4(11), 370-375. https://doi.org/10.1016/0924-2244(93)90019-7

Okazaki, E., & Fukuda, Y. (1996) Effect of water-soluble protein on pressure-induced gelation of Alaska pollack surimi. Progress in Biotechnology 13, 363-368. https://doi.org/10.1016/S0921-0423(06)80061-4

Patterson, M. F., Ledward, D. A., & Rogers, N. (2005). High pressure processing. In Brennan, J. G. (Ed.). Food Processing Handbook (173-200). Weinheim, Germany: Wiley-VCH. https://doi.org/10.1002/3527607579.ch6

Patterson, M. F., Ledward, D. A., Leadley, C., & Rogers, N. (2011). High pressure processing. In Brennan, J. G., & Grandison, A. S. Food Processing Handbook (2nd ed, 179-204). Weinheim, Germany: Wiley-VCH. https://doi.org/10.1002/9783527634361.ch6

Ramirez-Suarez, J. C., & Morrissey, M. T. (2006). Effect high-pressure processing (HPP) on shelf life of albacore tuna (Thunnus alalunga) minced muscle. Innovative Food Science & Emerging Technologies 7(1-2), 19-27. https://doi.org/10.1016/j.ifset.2005.08.004

Rastogi, N. K., Raghavarao, K. S. M. S., Balasubramaniam, V. M., Niranjan, K., & Knorr, D. (2007). Opportunities and challenges in high pressure processing of foods. Critical Reviews in Food Science and Nutrition 47(1), 69-112. https://doi.org/10.1080/10408390600626420

San Martín, M. F., Barbosa-Cánovas, G. V., & Swanson, B. G. (2002). Food processing by high hydrostatic pressure. Critical Reviews in Food Science and Nutrition 42(6), 627-645. https://doi.org/10.1080/20024091054274

Sevenich, R., Bark, F., Crews, C., Anderson, W., Pye, C., Riddellova, K., Hradecky, J., Moravcova, E., Reineke, K., & Knorr, D. (2013). Effect of high pressure thermal sterilization on the formation of food processing contaminants. Innovative Food Science & Emerging Technologies 20, 42-50. https://doi.org/10.1016/j.ifset.2013.07.006

Suzuki, A. (2002) High pressure-processed foods in Japan and the world. Progress in Biotechnology 19, 365-374. https://doi.org/10.1016/S0921-0423(02)80126-5

Tironi, V., de Lamballerie, M., & Le-Bail, A. (2010). Quality changes during the frozen storage of sea bass (Dicentrarchus labrax) muscle after pressure shift freezing and pressure assisted thawing. Innovative Food Science & Emerging Technologies 11(4), 565-573. https://doi.org/10.1016/j.ifset.2010.05.001

Tironi, V., LeBail, A., & de Lamballerie, M. (2007). Effects of pressure-shift freezing and pressure-assisted thawing on sea bass (Dicentrarchus labrax) quality. Journal of Food Science 72(7), C381-C387. https://doi.org/10.1111/j.1750-3841.2007.00472.x

Torres, J. A., & Velazquez, G. (2005). Commercial opportunities and research challenges in the high pressure processing of foods. Journal of Food Engineering 67(1-2), 95-112. https://doi.org/10.1016/j.jfoodeng.2004.05.066

Tsironi, T., Anjos, L., Pinto, P. I. S., Dimopoulos, G., Santos, S., Santa, C., Manadas, B., Canario, A., Taoukis, P., & Power, D. (2019). High pressure processing of European sea bass (Dicentrarchus labrax) fillets and tools for flesh quality and shelf life monitoring. Journal of Food Engineering 262, 83-91. https://doi.org/10.1016/j.jfoodeng.2019.05.010

Venugopal, V. (2005). Quick freezing and individually quick frozen products. Seafood Processing (1st ed, 95-139). Boca Raton, Floria, United States: CRC Press. https://doi.org/10.1201/9781420027396

Xuan, X. T., Cui, Y., Lin, X. D., Yu, J. F., Liao, X. J., Ling, J. G., & Shang, H. T. (2018). Impact of high hydrostatic pressure on the shelling efficacy, physicochemical properties, and microstructure of fresh razor clam (Sinonovacula constricta). Journal of Food Science 83(2), 284-293. https://doi.org/10.1111/1750-3841.14032

Ye, T., Chen, X., Chen, Z., Liu, R., Wang, Y., Lin, L., & Lu, J. (2021). Quality characteristics of shucked crab meat (Eriocheir sinensis) processed by high pressure during superchilled storage. Journal of Food Biochemistry 45(4), e13708. https://doi.org/10.1111/jfbc.13708