Linh B. Ton , Vu X. Le , Trinh T. T. Ngo , & Phong V. Nguyen *

* Correspondence: Nguyen Vu Phong (email:

Main Article Content


This study was conducted to determine some conditions for transformation via Agrobacterium rhizogenes on soybean cultivars HLDN29 and DT84. Cotyledon explants were more efficient in hairy root induction compared with hypocotyl explants in both cultivars of soybean. The highest root induction rate and average root number were observed in HLDN29 explants infected with ATCC11325 and ATCC15834 strains (approx. 96% - 100% and 8 roots per explant) and in DT84 explants infected with ATCC15834. Six to eight day – old cotyledonary leaves after sowing were optimal and appropriate for hairy root induction. Direct inoculation and immersion methods showed no significant difference in root induction rate and average root number in both HLDN29 and DT84 cultivars. Transgenic root lines were identified based on PCR analysis with virD và rolC sequences – specific primers.

Keywords: Agrobacterium rhizogenes, Cotyledon, Hairy root, Soybean, Transformation

Article Details


AL-Yozbaki, G. S. H., Rasheed, J. H., & Salih, S. M. (2015). Transformation of Soybean (Glycine max L.) Via GUS-Labeled Agrobacterium rhizogenes R1000. International Journal of Science and Technology 4(6), 267-272.

Cao, D., Hou, W., Song, S., Sun, H., Wu, C., Gao, Y., & Han, T. (2009). Assessment of conditions affecting Agrobacterium rhizogenes mediated transformation of soybean. Plant Cell, Tissue and Organ Culture 96(1), 45-52.

Cho, H. J., Farrand, S. K., Noel, G. R., & Widholm, J. M. (2000). High-efficiency induction of soybean hairy roots and propagation of the soybean cyst nematode. Planta 210(2), 195-204.

Collier, R., Fuchs, B., Walter, N., Kevin, L. W., & Taylor, C. G. (2005). Ex vitro composite plants: An inexpensive, rapid method for root biology. The Plant Journal 43(3), 449-457.

Fattahi, M., Nazeri V., Torras-Claveria, L., Sefidkon, F., Cusido, R. M., Zamani, Z., & Palazon, J. (2013). A new biotechnological source of rosmarinic acid and surface flavonoids: hairy root cultures of Dracocephalum kotschyi Boiss. Industrial Crops and Products 50, 256-263.

Gamborg, O. L., Miller, R. A., & Ojima, K.(1968). Nutrient requirement of suspensions cultures of soybean root cells. Experimental Cell Research 50(1), 151-158.

Hayashi, T., Banba, M., Shimoda, Y., Kouchi, H., Hayashi, M., & Imaizumi-Anraku, H. (2010). A dominant function of CCaMK in intracellular accommodation of bacterial and fungal endosymbionts. The Plant Journal 63(1), 141-154.

Hernandez-Garcia, C. M., Bouchard, R. A., Rushton, P. J., Jones, M. L., Chen, X., Timko, M. P., & Finer, J. J. (2010). High level transgenic expression of soybean (Glycine max) GmERF and GmUBI gene promoters isolated by a novel promoter analysis pipeline. BMC Plant Biology 10(1), 237.

Homrich, M. S., Wiebke-Strohm, B., Weber, R. L. M., & Bodanese-Zanettini, M. H. (2012). Soybean genetic transformation: A valuable tool for the functional study of genes and the production of agronomically improved plants. Genetics and Molecular Biology 35(4), 998-1010.

ISAAA (International Service for The Acquisition of Agro-Biotech Applications). 2016. Global Status of Commercialized Biotech/GM Crops: 2016. New York, USA: ISAAA.

Karmarkar, S. H, Keshavachandran, R., Nazeem, P. A., & Girija, D. (2001). Hairy root induction in Adapathiyan (Holostemma adakodien K. Schum.). Journal of Tropical Agriculture 39(12), 102-107.

Kereszt, A., Li, D., Indrasumunar, A., Nguyen, C. D. T, Nontachaiyapoom, S., Kinkema, M., & Gresshoff, P. M. (2007). Agrobacterium rhizogenes mediated transformation of soybean to study root biology. Nature protocols 2(4), 948-952.

Krishnan, H. B. (2005). Engineering Soybean for Enhanced Sulfur Amino Acid Content. Crop Science 45(2), 454-461.

Li, J., Todd, T. C., & Trick, H. N. (2010). Rapid in planta evaluation of root expressed transgenes in chimeric soybean plants. Plant Cell Reports 29(2), 113-123.

Marcolino-Gomes, J., Rodrigues, F. A., Fuganti-Pagliarini, R., Nakayama, T. J., Ribeiro Reis, R., Bou ̧cas Farias, J. R., Harmon, F. G., Molinari, H. B. C., Molinari, M. D. C., & Nepomuceno, A. (2015). Transcriptome-wide identification of reference genes for expression analysis of soybean responses to drought stress along the day. Plos one 10(9), e013905.

Olhoft, P. M., Bernal, L. M., Grist, L. B., Hill, D. S., Mankin, S. L., Shen, Y., Kalogerakis, M., Wiley, H., Toren, E., Song, H. S., Hillebrand, H., & Jones, T. (2007). A novel Agrobacterium rhizogenes -mediated transformation method of soybean [Glycine max (L.) Merrill] using primary-node explants from seedlings. In Vitro Cellular & Developmental Biology - Plant 43(6), 536-549.

Olhoft, P. M., Flagel, L. E., Donovan, C. M., & Somers, D. A. (2003). Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216(5), 723-735.

Ozyigit, I. I., Dogan, I., & Artam Tarhan, E. (2013). Agrobacterium rhizogenes-Mediated Transformation and Its Biotechnological Applications in Crops. In Hakeem, K. R., Ahmad, P., & Ozturk, M. (Eds.). Crop Improvement: New Approaches and Modern Techniques (ed., 1-48). Massachusetts, USA: Springer.

Savka, M. A., Ravillion, B., Noel, G. R., & Farrand, S. K. (1990). Induction of hairy root on cultivated soybean genoptypes and their use to propagate soybean cyst nematode. Phytopathology 80(5), 503- 508.

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette, M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S., & Mesirov, J. P. (2005). Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proceedings of the National Academy of Sciences 102(43), 15545-15550.

Tazeen, S., & Mirza, B. (2004). Factors affecting Agrobacterium tumefaciens mediated genetic transformation of Vigna radiata (L.). Pakistan journal of botany 36(4), 887-896.

Tran, D. V. (2007). Soybean Glycine max (L) Merr. Ha Noi, Vietnam: Agricultural Publishing House.