Lan T. N. Nguyen * , Ngan T. T. Luu , Huy H. Le , Ha T. T. Phan , Viet B. Nguyen , & Thi T. X. Luu

* Correspondence: Nguyen Thi Ngoc Lan (email: ntngoclan@hcmuaf.edu.vn)

Main Article Content

Abstract

This study focused on optimizing the Friedel-Crafts sulfonylation reaction between 1,3-dimethoxybenzene and p-toluenesulfonic anhydride using chloroaluminate ionic liquid immobilized on magnetic nanoparticles as the catalyst. Various reaction conditions including the ratio between reagents (0.9:1.0 - 1.1:1.0), the catalyst amount (0.1 - 0.3 g), reaction temperature (100 - 120oC), and time (1 - 3 h) were optimized using response surface methodology based on a central composite design model. The results showed that the optimal reaction conditions were achieved at 115°C for 2.3 h, using 0.24 g of catalyst with a reagent ratio of 1.0:1.0, resulting in the highest sulfones yield of 82%.

Keywords: Ionic liquid, Magnetic nanoparticles, Response surface methodology, Sulfone, Sulfonylation

Article Details

References

Abdulhameed, A. S., Mohammad, A. T., & Jawad, A. H. (2019). Application of response surface methodology for enhanced synthesis of chitosan tripolyphosphate/TiO2 nanocomposite and adsorption of reactive orange 16 dye. Journal of Cleaner Production 232, 43-56. https://doi.org/10.1016/j.jclepro.2019.05.291.

Andres, A. I., Petron, M. J., Lopez, A. M., & Timon, M. L. (2020). Optimization of extraction conditions to improve phenolic content and in vitro antioxidant activity in craft brewers’ spent grain using response surface methodology (RSM). Foods 9(10), 1398. https://doi.org/10.3390/foods9101398.

Bahrami, K., Khodei, M. M., & Shahbazi, F. (2008). Highly selective catalytic Friedel–Crafts sulfonylation of aromatic compounds using a FeCl 3-based ionic liquid. Tetrahedron Letters 49(24), 3931-3934. https://doi.org/10.1016/j.tetlet.2008.04.051.

Bandgar, B. P., & Kasture, S. P. (2001). Zinc-mediated fast sulfonylation of aromatics. Synthetic Communications 31(7), 1065-1068. https://doi.org/10.1081/scc-100103538.

Choudary, B. M., Chowdari, N. S., & Kantam, M. L. (2000). Friedel–Crafts sulfonylation of aromatics catalysed by solid acids: An ecofriendly route for sulfone synthesis. Journal of the Chemical Society, Perkin Transactions 1 16, 2689-2693. https://doi.org/10.1039/b002931i.

Fleck, T. J., Chen, J. J., Lu, C. V., & Hanson, K. J. (2006). Isomerization-free Sulfonylation and its application in the synthesis of PHA-565272A. Organic Process Research & Development 10(2), 334-338. https://doi.org/10.1021/op050208a.

García-Cabeza, A. L., Ray, L. P., Marín-Barrios, R., Ortega, M. J., Moreno-Dorado, F. J., Guerra, F. M., & Massanet, G. M. (2015). Optimization by response surface methodology (RSM) of the Kharasch–Sosnovsky oxidation of valencene. Organic Process Research & Development 19(11), 1662-1666. https://doi.org/10.1021/op5002462.

Hamsaveni, D. R., Prapulla, S. G., & Divakar, S. (2001). Response surface methodological approach for the synthesis of isobutyl isobutyrate. Process Biochemistry 36(11), 1103-1109. https://doi.org/10.1016/S0032-9592(01)00142-X.

Jang, D. O., Moon, K. S., Cho, D. H., & Kim, J. G. (2006). Highly selective catalytic Friedel–Crafts acylation and sulfonylation of activated aromatic compounds using indium metal. Tetrahedron Letters 47(34), 6063-6066. https://doi.org/10.1016/j.tetlet.2006.06.099.

Leusen, A. M. V., Wildeman, J., & Oldenziel, O. H. (1977). Chemistry of sulfonylmethyl isocyanides. 12. Base-induced cycloaddition of sulfonylmethyl isocyanides to carbon,nitrogen double bonds. Synthesis of 1,5-disubstituted and 1,4,5-trisubstituted imidazoles from aldimines and imidoyl chlorides. The Journal of Organic Chemistry 42(7), 1153-1159. https://doi.org/10.1021/jo00427a012.

Li, J. J., & Corey, E. J. (2005). Name reactions in heterocyclic chemistry. New Jersey, USA: John Wiley & Sons. https://doi.org/10.1002/0471704156.

MacKinnon, S. M., & Wang, Z. Y. (1998). Anhydridecontaining polysulfones derived from a novel A2X-type monomer. Macromolecules 31(22), 7970-7972. https://doi.org/10.1021/ma9803640.

Marquié, J., Salmoria, G., Poux, M., Laporterie, A., Dubac, J., & Roques, N. (2001). Acylation and related reactions under microwaves. 5. Development to large laboratory scale with a continuous-flow process. Industrial and Engineering Chemistry Research 40(21), 4485-4490. https://doi.org/10.1021/ie0103299.

Michaely, W. J., & Kraatz, G. W. (1988). Certain 2-(substituted benzoyl)-1,3-cyclohexanediones and ther use as herbicdes. Virginia, USA: Zeneca Inc, Syngenta Crop Protection LLC.

Nara, S. J., Harjani, J. R., & Salunkhe, M. M. (2001). Friedel-Crafts sulfonylation in 1-Butyl-3-methylimidazolium chloroaluminate ionic liquids. The Journal of Organic Chemistry 66(25), 8616-8620. https://doi.org/10.1021/jo016126b.

Nguyen, L. T. N., Nguyen, A. Q., Le, K. T., Luu, T. T. X., Tran, N. T. K., & Pham, B. P. (2022). Chloroaluminate ionic liquid immobilized on magnetic nanoparticles as a heterogeneous lewis acidic catalyst for the friedel-crafts sulfonylation of aromatic compounds. Molecules 27(5). https://doi.org/10.3390/molecules27051644.

Perez, J. V. D., Nadres, E. T., Nguyen, H. N., Dalida, M. L. P., & Rodrigues, D. F. (2017). Response surface methodology as a powerful tool to optimize the synthesis of polymer-based graphene oxide nanocomposites for simultaneous removal of cationic and anionic heavy metal contaminants. RSC Advances 7(30), 18480-18490. https://doi.org/10.1039/c7ra00750g.

Robello, D. R., Ulman, A., & Urankar, E. J. (1993). Poly(p-phenylene sulfone). Macromolecules 26(25), 6718-6721. https://doi.org/10.1021/ma00077a004.

Safari, J., & Zarnegar, Z. (2013). Immobilized ionic liquid on superparamagnetic nanoparticles as an effective catalyst for the synthesis of tetrasubstituted imidazoles under solvent-free conditions and microwave irradiation. Comptes Rendus Chimie 16(10), 920-928. https://doi.org/10.1016/j.crci.2013.01.019.

Sarsfield, M., Roberts, A., Streletzky, K. A., Fodor, P. S., & Kothapalli, C. R. (2021). Optimization of gold nanoparticle synthesis in continuous‐flow micromixers using response surface methodology. Chemical Engineering and Technology 44(4), 622-630. https://doi.org/10.1002/ceat.202000314.

Swenson, R. E., Sowin, T. J., & Zhang, H. Q. (2002). Synthesis of substituted quinolines using the dianion addition of N-Boc-anilines and α-Tolylsulfonyl-α,β-unsaturated ketones. The Journal of Organic Chemistry 67(26), 9182-9185. https://doi.org/ 10.1021/jo0203387.

Trost, B. M., & Kalnmals, C. A. (2019). Sulfones as chemical chameleons: versatile synthetic equivalents of small-molecule synthons. Chemistry 25(48), 11193-11213. https://doi.org/10.1002/chem.201902019.

Yu, M., Wang, B., Qi, Z., Xin, G., & Li, W. (2019). Response surface method was used to optimize the ultrasonic assisted extraction of flavonoids from Crinum asiaticum. Saudi Journal of Biological Sciences 26(8), 2079-2084. https://doi.org/10.1016/j.sjbs.2019.09.018.

Zhang, X., Han, C., Chen, S., Li, L., Zong, J., Zeng, J., & Mei, G. (2018). Response surface methodology for the optimization of ultrasound-assisted extraction of tetrodotoxin from the liver of Takifugu pseudommus. Toxins 10(12). https://doi.org/10.3390/toxins10120529.