Ha T. N. Vo * , Vy T. Do , Ti T. Danh , Quan H. Nong , & Huyen K. Pham

* Correspondence: Vo Thi Ngoc Ha (email: ha.vothingoc@hcmuaf.edu.vn)

Main Article Content

Abstract

Halophytes are found in high-salt environments naturally, and their roots may be associated with promising microbial candidates for promoting crop growth and salt tolerance. In this study, halotolerant bacteria were isolated from soil and root samples of Rhizophora apiculate (R. apiculate), Avicennia ofcinalis (A. ofcinalis), Thespesia populnea (T. populnea), Acanthus ilicifolius (A. ilicifolius) and Trichophorum cespitosum (T. cespitosum), five native halophytes of southeast seaside of Vietnam. Isolates were tested for maximum salt tolerant and screened for the ability of phosphate solubilization and indole acetic acid (IAA) production. Colony morphology, pigmentation, and Gram staining of each IAA production halotolerant isolate were determined. The bacterial isolates showed the highest salt tolerance and IAA production were identifed by sequencing the 16S rRNA gene. A total of 54 isolates which were able to grow in the presence of up to NaCl 3M were isolated. Twenty-three halotolerant bacterial isolates had the capacity of IAA production, 60.9% from which were Gram positive with a cocci shape, colony in opaque/transparent yellow or opaque/off white, 1 - 2 mm or 2 - 3 mm in diameter with the convex surface. Three isolates VTDD1, VTTD2, and KGOR1 were able to solubilize insoluble phosphorus. The highest IAA production was observed in VTDR1 (93.77 µg/mL) followed by VTMR1 (75.23 µg/mL) and VTDR2 (60.00 µg/mL), while the smallest IAA production was observed in CGOD1 (0.50 µg/mL). The isolates VTDR1 and VTDR2 were identifed as Salinicola tamaricis (99.58% and 99.67% identity respectively), while VTMR1 was found to be Salinicola peritrichatus (98.37% identity).

Keywords: Halophyte, IAA production, Phosphorus solubilization, Salt tolerant bacteria

Article Details

References

Aragues, R., Medina, E. T., Zribi, W., Claver´ıa, I., Alvaro-Fuente, J., & Faci, J. (2015). Soil Salinization´ as a threat to the sustainability of deficit irrigation under present and expected climate change scenarios. Irrigation Science 33, 67-79. https://doi.org/10.1007/s00271-014-0449-x

Bric, J. M., Bostock, R. M., & Silverstone, S. E. (1991). Rapid in situ assay for indoleacetic acid production by bacteria immobilized on a nitrocellulose membrane. Applied and Environmental Microbiology 57(2), 535-538. https://doi.org/10.1128/aem.57.2.535-538.1991

Chen, Q., & Liu, S. (2019). Identification and characterization of the phosphate-solubilizing bacterium pantoea sp. S32 in reclamation soil in Shanxi, China. Frontiers in Microbiology 10, 2171. https://doi.org/10.3389/fmicb.2019.02171

Dewi, T. K., Suryanggono, J., & Agustiyani, D. (2016). Isolasi dan uji aktivitas bakteri penghasil hormon tumbuh IAA (Indole-3-Acetic Acid) dan Bakteri Perombak Protein dari Tanah Pertanian Tual, Maluku Tenggara. Pros Sem nas Masy Biodiv Indon 2, 271-276.

Egamberdieva, D., & Kucharova, Z. (2009). Selection for root colonising bacteria stimulating wheat growth in saline soils. Biology and Fertility of Soils 45(6), 563-571. https://doi.org/10.1007/s00374-009-0366-y

Ehmann, A. (1977). The van URK-Salkowski reagent a sensitive and specific chromogenic reagent for silica gel thin-layer chromatographic detection and identification of indole derivatives. Journal of Chromatography A 132(2), 267-276. https://doi.org/10.1016/S0021-9673(00)89300-0

Etesami, H., & Beattie, G. A. (2018). Mining halophytes for plant growth-promoting halotolerant bacteria to enhance the salinity tolerance of non-halophytic crops. Frontiers in Microbiology 9, 148. https://doi.org/10.3389/fmicb.2018.00148

Etesami, H., & Maheshwari, D. K. (2018). Use of plant growth promoting rhizobacteria (PGPRs) with multiple plant growth promoting traits in stress agriculture: Action mechanisms and future prospects. Ecotoxicology and Environmental Safety 156, 225-246. https://doi.org/10.1016/j.ecoenv.2018.03.013

Ipek, M., Arıkan, S¸., Pırlak, L., & E¸sitken, A. (2019). Sustainability of crop production by PGPR under anbiotic stress conditions. In Kumar, A., & Meena, V. (Eds.) Plant Growth Promoting Rhizobacteria for Agricultural Sustainability (293-314). Singapore: Springer. https://doi.org/10.1007/978-981-13-7553-8_15

Kearl, J., McNary, C., Lowman, J. S., Mei, C., Aanderud, Z. T., Smith, S. T., West, J., Colton, E., Hamson, M., & Nielsen, B. L. (2019). Salt-tolerant halophyte rhizosphere bacteria stimulate growth of alfalfa in salty soil. Frontiers in Microbiology 10, 1849. https://doi.org/10.3389/fmicb.2019.01849

Kotuby-Amacher, J., Koenig, R., & Kitchen, B. (2000). Salinity and plant tolerance. Utah, USA: Utah State University Cooperative Extension.

Kumari, A., Das, P., Parida, A. K., & Agarwal, P. K. (2015). Proteomics, metabolomics, and ionomics perspectives of salinity tolerance in halophytes. Frontiers in Plant Science 6, 537. https://doi.org/10.3389/fpls.2015.00537

Larekeng, S. H., Gusmiaty, & Achmad, F. (2020). Production of IAA hormone in rhizosphere bacterial isolates of community forest stands. IOP Conference Series Earth and Environmental Science 575(1), 012022. https://doi.org/10.1088/1755-1315/575/1/012022

Meena, S. K., & Meena, V. S. (2017). Importance of Soil Microbes in Nutrient Use Efficiency and Sustainable Food Production. In Meena, V., Mishra, P., Bisht, J., & Pattanayak, A. (Eds.). Agriculturally Important Microbes for Sustainable Agriculture (3-33). Singapore: Springer. https://doi.org/10.1007/978-981-10-5343-6_1

Mirza, M. S., Ahmad, W., Latif, F., Haurat, J., Bally, R., Normand, P., & Malik, K. A. (2001). Isolation, partial characterization, and the effect of plant growthpromoting bacteria (PGPB) on micro-propagated sugarcane in vitro. Plant and Soil 237, 47-54. https://doi.org/10.1023/A:1013388619231

Mohite, B. (2013). Isolation and characterization of indole acetic acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. Journal of Soil Science and Plant Nutrition 13(3), 638-649. http://dx.doi.org/10.4067/S0718-95162013005000051

Mukhtar, S., Zareen, M., Khaliq, Z., Mehnaz, S., & Malik, K. A. (2020). Phylogenetic analysis of halophyteassociated rhizobacteria and effect of halotolerant and halophilic phosphate-solubilizing biofertilizers on maize growth under salinity stress conditions. Journal of Applied Microbiology 128(2), 556-573. https://doi.org/10.1111/jam.14497

Nadeem, S. M., Ahmad, M., Zahir, Z. A., Javaid, A., & Ashraf, M. (2014). The role of mycorrhizae and plant growth promoting rhizobacteria (PGPR) in improving crop productivity under stressful environments. Biotechnology Advances 32(2), 429-448. https://doi.org/10.1016/j.biotechadv.2013.12.005

Naeima, M. H. Y. (2018). Capability of plant growthpromoting rhizobacteria (PGPR) for producing indole acetic acid (IAA) under extreme conditions. European Journal of Biological Research 8(4), 174-182. http://dx.doi.org/10.5281/zenodo.1412796

Nautiyal, C. S. (1999). An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters 170(1), 265-270. https://doi.org/10.1111/j.1574-6968.1999.tb13383.x

Numan, M., Bashir, S., Khan, Y., Mumtaz, R., Shinwari, Z. K., Khan, A. L., Khan, A., & AL-Harrasi, A. (2018). Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiological Research 209, 21-32. https://doi.org/10.1016/j.micres.2018.02.003

Patil, V. (2011). Production of indole acetic acid by azotobacter sp. Recent Research in Science and Technology 3(12), 14-16.

Richards, L. A. (1954). Diagnosis and improvement of saline and alkali soils. USDA Agriculture Handbook 60. Washington, USA: United State Department of Agriculture.

Ruppel, S., Franken, P., & Witzel, K. (2013). Properties of the halophyte microbiome and their implications for plant salt tolerance. Functional Plant Biology 40, 940951.

Sarkar, A., Ghosh, P. K., Pramanik, K., Mitra, S., Soren, T., Pandey, S., Mondal, M. H., & Maiti, T. K. (2018a). A halotolerant Enterobacter sp. displaying ACC deaminase activity promotes rice seedling growth under salt stress. Research in Microbiology 169(1), 20-32. https://doi.org/10.1016/j.resmic.2017.08.005

Sarkar, A., Pramanik, K., Mitra, S., Soren, T., & Maiti, T. K. (2018b). Enhancement of growth and salt tolerance of rice seedlings by ACC deaminase-producing Burkholderia sp. MTCC 12259. Journal of Plant Physiology 231, 434-442. https://doi.org/10.1016/j.jplph.2018.10.010

Sarwar, M., & Kremer, R. J. (1995). Determination of bacterially derived auxins using a microplate method. Letters in applied microbiology. Letters in Applied Microbiology 20(5), 282-285. https://doi.org/10.1111/j.1472-765X.1995.tb00446.x

Sayyed, R. Z., Reddy, M. S., & Antonius, S. (2020). Plant growth promoting rhizobacteria: Potential microbes for sustainable agriculture. Singapore: Springer.

Sgroy, V., Cass´an, F., Masciarelli, O., Del Papa, M. F., Lagares, A., & Luna, V. (2009). Isolation and characterization of endophytic plant growth-promoting (PGPB) or stress homeostasis-regulating (PSHB) bacteria associated to the halophyte Prosopis strombulifera. Applied Microbiology and Biotechnology 85(2), 371-381. https://doi.org/10.1007/s00253-009-2116-3

Shahzad, R., Khan, A. L., Bilal, S., Waqas, M., Kang, S. M., & Lee, I. (2017). Inoculation of abscisic acidproducing endophytic bacteria enhances salinity stress tolerance in Oryza sativa. Environmental and Experimental Botany 136, 68-77. https://doi.org/10.1016/j.envexpbot.2017.01.010

Sharma, A., Dev, K., Sourirajan, A., & Choudhary, M., (2021). Isolation and characterization of salt-tolerant bacteria with plant growth-promoting activities from saline agricultural fields of Haryana, India. Journal of Genetic Engineering and Biotechnology 19, 99. https://doi.org/10.1186/s43141-021-00186-3

Sharma, A., Sharma, R. P., Katoch, V., & Sharma, G. D. (2016). Influence of vermicompost and split applied nitrogen on growth, yield, nutrient uptake and soil fertility in pole type frenchbean (Phaseolus vulgaris L.) in an acid alfisol. Legume Research 41(1), 126-131. https://doi.org/10.18805/lr.v0iOF.9107

Sharma, S., Kulkarni, J., & Jha, B. (2016). Halotolerant rhizobacteria promote growth and enhance salinity tolerance in peanut. Frontiers in Microbiology 7, 1600. https://doi.org/10.3389/fmicb.2016.01600

Susilowati, D. N., Riyanti, E. I., Setyowati, M., & Mulya, K. (2018). Indole-3-acetic acid producing bacteria and its application on the growth of rice. AIP Conference Proceedings 2002(1), 020016. https://doi.org/10.1063/1.5050112

Turner, S., Pryer, K. M., Miao, V. P. W., & Palmer, J. D. (1999). Investigating deep phylogenetic relationships among cyanobacteria and plastids by small subunit rRNA sequence analysis. Journal of Eukaryotic Microbiology 46(4), 327-338. https://doi.org/10.1111/j.1550-7408.1999.tb04612.x

Wild, A. (2003). Soils, land and food: managing the land during the twenty-first century. Cambridge, UK: Cambridge University Press.

Yuan, Z., Druzhinina, I. S., Labb´e, J., Redman, R., Qin, Y., Rodriguez, R., Zhang, C., Tuskan, G. A., & Lin, F. (2016). Specialized microbiome of a halophyte and its role in helping non-host plants to withstand salinity. Scientific Reports 6, 32467. https://doi.org/10.1038/srep32467

Zerrouk, I. Z., Rahmoune, B., Khelifi, L., Mounir, K., Baluska, F., & Ludwig-Mu¨ller, J. (2019). Algerian Sahara PGPR confers maize root tolerance to salt and aluminum toxicity via ACC deaminase and IAA. Acta Physiologiae Plantarum 41, 91. https://doi.org/10.1007/s11738-019-2881-2