Isolation and characterization of antibacterial compounds from Euphorbia tirucalli against Xanthomonas axonopodis pv. citri
Main Article Content
Abstract
Xanthomonas axonopodis pv. citri (X. axonopodis pv. citri) is the cause of canker disease on lime trees that negatively affect plant health and fruit quality. This study focused on the comparison of the extraction yield and antibacterial properties of Euphorbia tirucalli against X. axonopodis pv. citri, phytochemical screening, quantifcation of phenolic and flavonoid contents of the fraction extract. The results showed that the ethyl acetate fraction (EA) (7.5 mg/mL) of E. tirucalli from Dak Nong province had the best activity against bacteria with diameter of inhibition zone determined 15.50 ± 0.50 mm, and the minimum inhibition concentration was 0.312 mg/mL. Alkaloids, flavonoids, tannins, and terpenoids were found in the EA fraction extract of E. tirucalli, whereas saponin did not appear in the extract. The phenolic and flavonoid content was in the range of 14.46 - 98.63 mg GEA/g and 90.34 - 408.86 µg QE/g, respectively. Column chromatography followed Nuclear Magnetic Resonance spectra were performed and the three compounds were identifed as scopoletin, gallic acid, and 3,3’,4’-tri - O - methylellagic acid. This study suggests that the extract from E. tirucalli and the isolated compounds can be used for managing of citrus canker disease.
Article Details
References
Aleixo, T. B., Calmon, J. R., Falconi, A. P., Souza, A. R., Duarte, R. S., Fagundes, L. L., & Machado, R. R. P. (2018). Phytochemical screening and investigation of antimicrobial activity from derivatives of aveloz (Euphorbia tirucalli L.). SOJ Microbiology & Injectious Diseases 6(2), 1-7. https://doi.org/10.15226/sojmid/6/2/00196
Anabela, B., Carla, F., Maria, J. S., & Manuel, S. (2013). Antibacterial activity and mode of action of ferulic and gallic acid against pathogenic bacteria. Microbial Drug Resistance 19(4), 256-265. https://doi.org/10.1089/mdr.2012.0244
Brain, K. R., & Turner, T. D. (1975). The practical evaluation of phytopharmaceuticals (1st ed.). Bristol, UK: Wright Science Technical Publisher.
Devienne, K. F., & Raddi, M. S. G. (2002). Screening for antimicrobial activity of natural products using a microplate photometer. Brazilian Journal of Microbiology 33(2), 166-168. https://doi.org/10.1590/S1517-83822002000200014
Dubey, N. K., & Kishore, N. (1987). Fungitoxicity of some higher plants and synergistic activity of their essential oils. Tropical Science 27, 23-27.
Elena, S., Mariantonietta, S., Luca, T., Gianfranco, P., Lucia, M., Marina, S., Raffaele, C., & Patrizio, T. (2018). Antimicrobial activity of gallic acid against food related Pseudomonas strain and its use as biocontrol tool to improve the shelf life of fresh black truffles. International Journal of Food Microbiology 266, 183-189. https://doi.org/10.1016/j.ijfoodmicro.2017.11.026
Evans, W. C. (1996). Trease evans pharmacognosy (14th ed.). London, UK: WB Saunders.
Fawcett, C. H., & Spencer, D. M. (1970). Plant chemotherapy with plant products. Annual Review of Phytopathology 8, 403-418. https://doi.org/10.1146/annurev.py.08.090170.002155
Jadhav, D. M., Gawai, D. U., & Khillare, E. M. (2010). Evaluation if antibacterial and antifungal activity of Euphorbia tirucalli L. Bionano Front 3, 332-334.
Jalan, N., Kumar, D., Andrade, M. O., Yu, F., Jones, J. B., Graham, J. H., White, F. F., Setubal, J. C., & Wang, N. (2013). Comparative genomic and transcriptome analyses of pathotypes of Xanthomonas citri subsp. citri provide insights into mechanisms of bacterial virulence and host range. BMC Genomics 14, 551. https://doi.org/10.1186/1471-2164-14-551
Kuete, V., Wabo, G. F., Ngameni, B., Mbaveng, A. T., Metuno, R., Etoa, F. X, Ngadjui, B. T., Beng, V. P., Meyer, J. J. M., & Lall, N. (2007). Antimicrobial activity of the methanolic extract, fractions and compounds from the stem bark of Irvingia gabonensis (Ixonanthaceae). Journal of Ethnopharmacology 114(1), 54-60. https://doi.org/10.1016/j.jep.2007.07.025
Le, T. K. D., Bui, X. H., Nguyen, T. A. T., Pham, N. K. T., & Duong, T. H. (2019). Chemical constituents of Euphorbia tirucalli L. Science and Technology Development Journal - Natural Sciences 2(5), 76-82. https://doi.org/https://doi.org/10.32508/stdjns.v2i5.781
Lirio, L. G., Hermano, M. L., & Fontanilla, M. Q. (1998). Note antibacterial activity of medicinal plants from the Philippines. Pharmaceutical Biology 36(5), 357-359. https://doi.org/10.1076/phbi.36.5.357.4656
More, G., Lall, N., Hussein, A., & Tshikalange, T. E. (2012). Antimicrobial constituents of Artemisia afra Jacq. ex Willd. against periodontal pathogens. Evidence Based Complementary and Alternative Medicine 2012, 252758. https://doi.org/10.1155/2012/252758
Natividad, G. D. L. C., Abrham, G. R., Patricia A. F., Elsa, V. Z., Ma, D. P. G., Margarita, A. F., Ana, S. G. R., & Manases, G. C. (2019). Antibacterial activity of Morinda citrifolia Linneo seeds against methicillinresistant Staphylococcus spp. Microbial pathogenesis 128, 347-353. https://doi.org/10.1016/j.micpath.2019.01.030
Navarro-Martínez, M. D., Navarro-Perán, E., Cabezas-Herrera, J., Ruiz-Gómez, J., García-Cánovas, F., & Rodríguez-López, J. N. (2005). Antifolate activity of epigallocatechin gallate against Stenotrophomonas maltophilia. Antimicrobial Agents and Chemotherapy 49(7), 2914-2920. https://doi.org/10.1128/AAC.49.7.2914-2920.2005
NCCLS (National Committee for Clinical Laboratory Standards). (2003). Methods for dilution antimicrobial susceptibility test for bacteria that grow aerobically. Wayne, PA, USA: National Committee for Clinical Laboratory Standards.
Negi, A., & Kumar, P. (2015). Antibacterial effect of plant extracts and antibiotics on Xanthomonas axonopodis pv. citri in vitro. Trends in Biosciences 8(9), 2374-2376.
Orlanda, J. F. F., & Vale, V. V. (2015). Phytochemical analysis and photo-protective activity of theethanolic extract of Euphorbia tirucalli Linneau (Euphorbiaceae). Revista Brasileira de Plantas Medicinais 17(4), 730-736.
Radcliffe, E. B., Dunkel, F. V., Strzok, P. P., & Adam, S. (1991). Antifeedant effect of neem, Azadirachta indica A. Juss., kernel extracts on Kraussaria angulifera (Krauss) (Orthoptera:Acrididae), a Sahelian grasshopper. Tropical Agriculture 68(1), 95-101.
Ramesh, C. K., Prabha, M. N., Deepak, S. A., & Madhusudhan, K. N. (2009). Screening of antiviral property against tobamoviruses in latex of Euphorbia tirucalli L. Indian Journal of Biotechnology 3(1), 1-3.
Silva, I. C., Regasini, L. O., Petrˆonio, M. S., Silva, D. H. S., Bolzani, V. S., Belasque Jr., J., Sacramento, L. V. S., & Ferreira, H. (2013). Antibacterial activity of alkyl gallates against Xanthomonas citri subsp. citri. Journal of Bacteriology 195(1), 85-94. https://doi.org/10.1128/JB.01442-12
Sugumar, S., Karthikeyan, S., & Gothandam, K. M. (2010). Preliminary phytochemical and antibacterial investigations of Euphorbia tirucalli stem extracts. Pharmacology Online 3, 937-943.
Tiwtawat, N., Markus, B., Henrik, B., Kwankamol, T., Wichai, S., & Srunya, V. (2018). Scopoletin from Lasianthus lucidus Blume (Rubiaceae): A potential antimicrobial against multidrug-resistant Pseudomonas aeruginosa. Journal of Applied Pharmaceutical Science 8(9), 1-6. https://doi.org/10.7324/JAPS.2018.8901
Toda, M., Okubo, S., Ohnishi, R., & Shimamura, T. (1989). Antibacterial and bactericidal activities of Japanese green tea. Japanese Journal Bacteriology 44(4), 669-672. https://doi.org/10.3412/jsb.44.669
Upadhyay, B., Singh, K. P., & Kumar, A. (2010). Ethno-medicinal, phytochemical and antimicrobial studies of Euphorbia tirucalli L. Journal Phytology 2(4), 65-77.
Waterman, P. G., & Mole, S. (1994). Analysis of phenolic plant metabolites (1st ed.). Boston, USA: Blackwell Scientific.
Wisnu, C. P., & Risna, A. (2020). Antibacterial activity of scopoletin from stem bark of Aleurites moluccana against salmonella typhi. Journal of Tropical Pharmacy and Chemistry 5(1), 29-32.
Younes, A. B., Salem, M. B., Abed, H. E., & Jarraya, R. (2018). Phytochemical screening and antidiabetic, antihyperlipidemic, and antioxidant properties of Anthyllis henoniana (Coss.) Flowers extracts in an alloxan-induced rats model of diabetes. Evidence Based Complementary and Alternative Medicine 2018, 1-14. https://doi.org/10.1155/2018/8516302
Zhishen, J., Mengcheng, T., & Jianming, W. (1999). The determination of flavonoid contents in mulberry and scavenging effects on superoxide radicals. Food Chemistry 64(4), 555-559. https://doi.org/10.1016/S0308-8146(98)00102-2