Phuong H. Le , Minh N. Nguyen , & Viet B. Nguyen *

* Correspondence: Nguyen Bao Viet (email: nbviet@hcmuaf.edu.vn)

Main Article Content

Abstract

The aim of this study was to evaluate the antioxidant capacity of thawed frozen strawberries (Fragariaananasa) and mulberries (Morusnigra). Both types of fruit were frozen in a freezer with a cooling rate of 1 0 C/min and stored at -180C in 1 week before thawed at ambient temperature, cold temperature (40C) and in a microwave oven. ANOVA, LSD test and Principal Component Analysis (PCA) were applied to compare the effect of thawing methods. Results showed that different thawing methods significantly affected (P < 0.05) drip loss, vitamin C content, total phenolic content (TPC) and antioxidant capacity of strawberries and mulberries. The strongly negative correlation was found between the drip loss and the remaining vitamin C as well as between the thawing time and the antioxidant capacity of thawed fruit. Among three thawing methods, microwave was considered as the most effective method to retain antioxidant capacity, vitamin C and total phenolic content for both strawberry and mulberry.  

 

Keywords: Antioxidant capacity, Freezing, Mulberries, Strawberries, Thawing

Article Details

References

Alvarez, M. D., & Canet, W. (2000). Principal component analysis to study the effect of temperature fluctuations during storage of frozen potato. European Food Research and Technology 211(6), 415-421. https://doi.org/10.1007/s002170000198

Anttonen, M. J., & Karjalainen, R. O. (2005). Environmental and genetic variation of phenolic compounds in red raspberry. Journal of Food Composition and Analysis 18(8), 759-769. https://doi.org/10.1016/j.jfca.2004.11.003

Anttonen, M. J., Hoppula, K. I., Nestby, R., Verheul, M. J., & Karjalainen, R. O. (2006). Influence of fertilization, mulch color, early forcing, fruit order, planting date, shading, growing environment, & genotype on the contents of selected phenolics in strawberry (Fragaria x ananassa Duch.) fruits. Journal of Agriculture and Food Chemistry 54(7), 2614-2620. https://doi.org/10.1021/jf052947w

Bae, S. H., & Suh, H. J. (2007). Antioxidant activities of five different mulberry cultivars in Korea. Journal of Food Science and Technology 40(6), 955-962. https://doi.org/10.1016/j.lwt.2006.06.007

Bobinaité, R., Viškelis, P., & Venskutonis, P. R. (2012). Variation of total phenolics, anthocyanins, ellagic acid and radical scavenging capacity in various raspberry (Rubus spp.) cultivars. Food Chemistry 132(3), 1495-1501. https://doi.org/10.1016/j.foodchem.2011.11.137

Cano, M. P., de Ancos, B., & Lobo, G. (1995). Peroxidase and polyphenol oxidase activities in papayas during postharvest ripening and after freezing/thawing. Journal of Food Science 60(4), 815-817. https://doi.org/10.1111/j.1365-2621.1995.tb06236.x

Chisari, M., Barbagallo, R. N., & Spagna G. (2007). Characterisation of polyphenol oxidase and peroxidase and influence on browning of cold stored straw-berry fruit. Journal of Agriculture and Food Chemistry 55(9), 3469-3476. https://doi.org/10.1021/jf063402k

Delgado, A. E., & Rubiolo, A. C. (2005). Microstructural changes in strawberry after freezing and thawing processes. Journal of Food Science and Technology 38(2),135-142. https://doi.org/10.1016/j.lwt.2004.04.015

Erickson, M. C., & Hung Y. C. (1997). Quality in Frozen Food. New York, USA: Springer.

Garrote, R. L., & Bertone, R. A. (1989). Osmotic concentration at low temperature of frozen strawberry halves. Effect of glycerol, glucose and sucrose solutions on exudates loss during thawing. Journal of Food Science and Technology 22(5), 264-267.

Hartmann A., Patz C. D., Andlauer W., Dietrich H., & Ludwig M. (2008). Influence of processing on quality parameters of strawberries. Journal of Agriculture and Food Chemistry 56(20), 9484-9489. https://doi.org/10.1021/jf801555q

Hollman, P. C. H. (2001). Evidence for health benefits of plant phenols: local or systemic effects. Journal of the Science of Food and Agriculture 81(9), 842-852. https://doi.org/10.1002/jsfa.900

Holzwarth, M., Korhummel S., Carle R., & Kammerer, D. R. (2012). Evaluation of the effects of different freezing and thawing methods on color, polyphenol and ascorbic acid retention in strawberries (Fragaria x ananassa Duch.). Food Research International 48(1), 241-248. https://doi.org/10.1016/j.foodres.2012.04.004

Hui, Y. H. (2006). Handbook of fruits and fruit processing. New Jersey, USA: Blackwell Publishing. https://doi.org/10.1002/9780470277737

ISO (International Organization for Standardization). (1984). Fruit and vegetable products - acid ascorbic determination. ISO, 6557-6562.

Jeremiah, L. E. (1996). Freezing effects on food quality (1st ed.). New York, USA: Marcel Dekker.

Krüger, E., Dietrich, H., Schöpplein, E., Rasim, S., & Kürbel, P. (2011). Cultivar, storage conditions and ripening effects on physical and chemical qualities of red raspberry fruit. Postharvest Biology and Technology 60(1), 31-37. https://doi.org/10.1016/j.postharvbio.2010.12.001

Li, C., Huang, W. Y., Wang, X. N., & Liu, W. X. (2013). Oxygen radical absorbance capacity of different varieties of strawberry and the antioxidant stability in storage. Molecules 18(2), 1528-1539. https://doi.org/10.3390/molecules18021528

Lindley, M. G. (1998). The impact of food processing on antioxidants in vegetable oils, fruits and vegetables. Trends Food Science & Technology 9(8-9), 336-340. https://doi.org/10.1016/S0924-2244(98)00050-8

Lozano, J. E., Anon, C., Barbosa-Canovas, G. V. & Parada-Arias, E. (2000). Trends in Food Engineering (1st ed.). New York, USA: CRC Press.

M ̈uft ̈ugil, N., & Yigit, V. (1986). Thawing of frozen strawberries. International Journal of Refrigeration 9(1), 31-33. https://doi.org/10.1016/0140-7007(86)90149-0

Mohammad, A. S., Mohsen, B. F., & Zohreh, H. E. (2004). Effect of low temperature on the ascorbic acid content and quality characteristics of frozen strawberry. Food chemistry, 86(3), 357-363. https://doi.org/10.1016/j.foodchem.2003.09.008

Olsson, M. E., Ekvall, J., Gustavsson, K. E., Nilsson, J., & Pillai, D., Sjöholm, I., Svensson, U., Akesson, B., Nyman, M. G. L. (2004). Antioxidants, low molecular weight carbohydrates, and total antioxidant capacity in strawberries (Fragaria x ananassa): Effects of cultivar, ripening, and storage. Journal of Agriculture and Food Chemistry 52(9), 2490-2498. https://doi.org/10.1021/jf030461e

Oszmianski, J., Wojdylo, A., & Kolniak, J. (2009). Effect of L-ascorbic acid, sugar, pectin and freeze-thaw treatment on polyphenol content of frozen strawberries. LWT - Food Science and Technology 42(2), 581-586. https://doi.org/10.1016/j.lwt.2008.07.009

Rhaman, M. S. (2007). Handbook of food preservation (2nd ed.). New York, USA: CRC Press.

Singleton, V. L., Orthofer, R., & Raventos, R. M. L. (1999). Analysis of total phenolic and other oxidation substrates and antioxidants by means of folinciocalteu reagent. Methods in Enzymology 299, 152-178.

Soazo, M., Perez L. M., Rubiolo A. C., & Verdini R. A. (2013). Effect of freezing on physical properties of whey protein emulsion films. Food hydrocolloids 31(2), 256-263. https://doi.org/10.1016/j.foodhyd.2012.10.022

Syamaladevi, R. M., Sablani, S. S., Tang, J., Powers, J., & Swanson, B. G. (2011). Stability of anthocyanins in frozen and freeze-dried raspberries during long term storage: in relation to glass transition. Journal of Food Sciences 76(6), 414-421. https://doi.org/10.1111/j.1750-3841.2011.02249.x

Thaipong, K., Boonprakob, U., Crosby, K., Zevallos, L. C., & Byrne, D. H. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating an-tioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis 19(6-7), 669-675. https://doi.org/10.1016/j.jfca.2006.01.003

Wills R. B. H., & Kim G. H. (1995). Effect of ethylene on postharvest life of strawberries. Postharvest Biology and Technology 6(3-4), 249-25. https://doi.org/10.1016/0925-5214(95)00005-Q