Yen T. X. Nguyen , Costas Stathopoulos , Chockchaisawasdee Suwimol , Phuong L. Nguyen , & Tuyen C. Kha *

* Correspondence: Kha Chan Tuyen (email: khachantuyen@hcmuaf.edu.vn)

Main Article Content

Abstract

The objective of this study was to investigate the efficiency of phenolic extraction and antioxidant activity from sesame cake using water extraction method and to evaluate the possibility of employing microwave irradiation to improve the extraction yield. The result showed that extraction temperature had major influence on total phenolic content and antioxidant activities of the extracts, whereas extraction time was found to be insignificant. The optimum extraction condition recommended were 90oC for 30 min in this research. Furthermore, microwave pre-treatment at 120 s could have significantly positive influence on the overall extraction yield, especially the total phenolics and antioxidants based on FRAP assay. Therefore, the obtained results suggest that sesame aqueous extracts could be a source of antioxidants with more feasible applications in food as well as other industries.

Keywords: Antioxidant activity, Microwave pre-treatment, Sesame cake, Total phenolic content

Article Details

References

Alupului, A., Cˇalinescu, I., & Lavric, V. (2012). Microwave Extraction of active principles from medicinal plants. UPB Scientific Bulletin, Series B: Chemistry and Materials Science 74, 129-142.

Arnao, M. B., Cano, A., & Acosta, M. (2001). The hydrophilic and lipophilic contribution to total antioxidant activity. Food Chemistry 73(2), 239-244. https://doi.org/10.1016/S0308-8146(00)00324-1

Azmir, J., Zaidul, I. S. M., Rahman, M. M., Sharif, K. M., Mohamed, A., Sahena, F., Jahurul, M. H. A, Ghafoor, K., Norulaini, N. A. N., & Omar, A. K. M. (2013). Techniques for extraction of bioactive compounds from plant materials: A review. Journal of Food Engineering 117(4), 426-436. https://doi.org/10.1016/j.jfoodeng.2013.01.014

Benzie, I. F. F., & Strain, J. J. (1996). The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Analytical Biochemistry 239(1), 70-76. https://doi.org/10.1006/abio.1996.0292

Brand-Williams, W., Cuvelier, M. E., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT - Food Science and Technology 28(1), 25-30. https://doi.org/10.1016/S0023-6438(95)80008-5

C¸am, M., & Aaby, K. (2010). Optimization of Extraction of Apple Pomace Phenolics with Water by Response Surface Methodology. Journal of Agricultural and Food Chemistry 58(16), 9103-9111. https://doi.org/10.1021/jf1015494

Candrawinata, V. I., Golding, J. B., Roach, P. D., & Stathopoulos, C. E. (2014). Optimisation of the phenolic content and antioxidant activity of apple pomace aqueous extracts. CyTA - Journal of Food 13(2), 293299. https://doi.org/10.1080/19476337.2014.971344

Floegel, A., Kim, D. O., Chung, S. J., Koo, S. I., & Chun, O. K. (2011). Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidantrich US foods. Journal of Food Composition and Analysis 24(7), 1043-1048. https://doi.org/10.1016/j.jfca.2011.01.008

Guo, C., Yang, J., Wei, J., Li, Y., Xu, J., & Jiang, Y. (2003). Antioxidant activities of peel, pulp and seed fractions of common fruits as determined by FRAP assay. Nutrition Research 23(12), 1719-1726. https://doi.org/10.1016/j.nutres.2003.08.005

Joana Gil-Cha´vez, G., Villa, J. A., Fernando AyalaZavala, J., Basilio Heredia, J., Sepulveda, D., Yahia, E. M., & Gonz´alez-Aguilar, G. A. (2013). Technologies for Extraction and Production of Bioactive Compounds to be Used as Nutraceuticals and Food Ingredients: An Overview. Comprehensive Reviews in Food Science and Food Safety 12(1), 5-23. https://doi.org/10.1111/1541-4337.12005

Mohdaly, A. A., Sarhan, M. A., Smetanska, I., & Mahmoud, A. (2010). Antioxidant properties of various solvent extracts of potato peel, sugar beet pulp and sesame cake. Journal of the Science of Food and Agriculture 90(2), 218-226. https://doi.org/10.1002/jsfa.3796

Oancea, S., Stoia, M., & Coman, D. (2012). Effects of extraction conditions on bioactive anthocyanin content of Vaccinium corymbosum in the perspective of food applications. Procedia Engineering 42, 489-495. https://doi.org/10.1016/j.proeng.2012.07.440

Pan, X., Niu, G., & Liu, H. (2003). Microwave-assisted extraction of tea polyphenols and tea caffeine from green tea leaves. Chemical Engineering and Processing: Process Intensification 42(2), 129-133. https://doi.org/10.1016/S0255-2701(02)00037-5

Pinelo, M., Rubilar, M., Jerez, M., Sineiro, J., & Nunez, M. J. (2005). Effect of solvent, temperature, and solvent-to-solid ratio on the total phenolic content and antiradical activity of extracts from different components of grape pomace. Journal of Agricultural and Food Chemistry 53(6), 2111-2117. https://doi.org/10.1021/jf0488110

Reshma, M. V., Namitha, L. K., Sundaresan, A., & Ravi Kiran, C. (2013). Total Phenol Content, Antioxidant Activities and α-Glucosidase Inhibition of Sesame Cake Extracts. Journal of Food Biochemistry 37(6), 723-731. https://doi.org/10.1111/j.1745-4514.2012.00671.x

Saikia, S., Mahnot, N. K., & Mahanta, C. L. (2015). Optimisation of phenolic extraction from Averrhoa carambola pomace by response surface methodology and its microencapsulation by spray and freeze drying. Food Chemistry 171, 144-152. https://doi.org/10.1016/j.foodchem.2014.08.064

Sparr Eskilsson, C., & Bj¨orklund, E. (2000). Analyticalscale microwave-assisted extraction. Journal of Chromatography A 902(1), 227-250. https://doi.org/10.1016/S0021-9673(00)00921-3

Spigno, G., Tramelli, L., & De Faveri, D. M. (2007). Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics. Journal of Food Engineering 81(1), 200-208. https://doi.org/10.1016/j.jfoodeng.2006.10.021

Suja, K. P., Jayalekshmy, A., & Arumughan, C. (2005). Antioxidant activity of sesame cake extract. Food Chemistry 91(2), 213-219. https://doi.org/10.1016/j.foodchem.2003.09.001

Terpinc, P., Ceh, B., Ulrih, N. P., & Abramoviˇc, H.ˇ (2012). Studies of the correlation between antioxidant properties and the total phenolic content of different oil cake extracts. Industrial Crops and Products 39, 210-217. https://doi.org/10.1016/j.indcrop.2012.02.023

Thaipong, K., Boonprakob, U., Crosby, K., CisnerosZevallos, L., & Hawkins Byrne, D. (2006). Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. Journal of Food Composition and Analysis 19(6–7), 669-675. https://doi.org/10.1016/j.jfca.2006.01.003

Veggi, P., Martinez, J., & Meireles, M. A. (2013). Fundamentals of microwave extraction. In F. Chemat & G. Cravotto (Eds.). Microwave-assisted extraction for bioactive compounds (15-52). New York, USA: Springer.

Vergara-Salinas, J. R., Perez-Jimenez, J., Torres, J. L., Agosin, E., & Perez-Correa, J. R. (2012). Effects of temperature and time on polyphenolic content and antioxidant activity in the pressurized hot water extraction of deodorized thyme (Thymus vulgaris). Journal of Agriculture and Food Chemistry 60(44), 1092010929. https://doi.org/10.1021/jf3027759

Wanasundara, U. N., Amarowicz, R., & Shahidi, F. (1995). Partial characterization of natural antioxidants in canola meal. Food Research International 28(6), 525-530. https://doi.org/10.1016/0963-9969(96)87362-5

Wang, W., Ma, X., Xu, Y., Cao, Y., Jiang, Z., Ding, T., Xe, X., & Liu, D. (2015). Ultrasound-assisted heating extraction of pectin from grapefruit peel: Optimization and comparison with the conventional method. Food Chemistry 178, 106-114. https://doi.org/10.1016/j.foodchem.2015.01.080

Wataniyakul, P., Pavasant, P., Goto, M., & Shotipruk, A. (2012). Microwave pretreatment of defatted rice bran for enhanced recovery of total phenolic compounds extracted by subcritical water. Bioresourse Technology 124, 18-22. https://doi.org/10.1016/j.biortech.2012.08.053