Tu P. C. Nguyen * , Ha N. Nguyen , Tinh T. Phung , & Nhan T. Dinh

* Correspondence: Nguyen Phuc Cam Tu (email: npctu@hcmuaf.edu.vn)

Main Article Content


The present study evaluated the effects of stocking density on water quality parameters, growth performance and survival rate of white leg shrimp Litopenaeus vannamei, reared in fiberglass tanks, without water exchange. Three stocking densities (50, 100 and 200 shrimp/m2) were tested. Each treatment consisted of three replicate fiberglass tanks (500 L). The shrimp were fed ad libitum four times per day with a commercial pellet (40-42% protein). After an 8-week trial, concentrations of nutrients in the culture tanks showed an increasing linear relationship with increasing stocking density. The growth performance of shrimp in low stocking densities was significantly greater than that in high stocking densities. The results from this study demonstrate that with increasing the stocking density the production of shrimp increased but n a low final weight and survival compared to low stocking density.

Keywords: Density effect, Growth performance, Shrimp Litopenaeus vannamei, Water quality

Article Details


Allan, G. L., & Maguire, G. B. (1992). Effects of stocking density on production of Penaeus monodon Fabricius in model farming ponds. Aquaculture 107(1), 49-66. https://doi.org/10.1016/0044-8486(92)90049-Q

APHA (American Public Health Association). (2012). Standard methods for the examination of water and wastewater (22nd ed.). Washington, USA: American Public Health Association.

Arambul-Mun˜oz, E., Ponce-Palafox, J. T., Santos, R. C. D. L., Arag´on-Noriega, E. A., Rodr´ıguez-Dom´ınguez, G., & Castillo-Vargasmachuca, S. G. (2019). Influence of stocking density on production and water quality of a photoheterotrophic intensive system of white shrimp (Penaeus vannamei) in circular lined grow-out ponds, with minimal water replacement. Latin American Journal of Aquatic Research 47(3), 449-455. http://dx.doi.org/10.3856/vol47-issue3-fulltext-7

Arnold, S. J., Coman, F. E., Jackson, C. J., & Groves, S. A. (2009). High-intensity, zero water-exchange production of juvenile tiger shrimp, Penaeus monodon: An evaluation of artificial substrates and stocking density. Aquaculture 293(1-2), 42-48.

Avnimelech, Y., & Ritvo, G. (2003). Shrimp and fish pond soils: processes and management. Aquaculture 220 (1-4), 549-567. https://doi.org/10.1016/S0044-8486(02)00641-5

Boopathy, R., Bonvillain, C., Fontenot, Q., & Kilgen, (2007). Biological treatment of low-salinity shrimp aquaculture wastewater using sequencing batch reactor. International Biodeterioration & Biodegradation 59(1), 16-19. https://doi.org/10.1016/j.ibiod.2006.05.003

Boyd, C. E., & Tucker, C. S. (1998). Pond aquaculture water quality management. New York, USA: Springer Science+Business Media.

Chen, S., Ling, J., & Blancheton, J. P. (2006). Nitrification kinetics of biofilm as affected by water quality factors. Aquacultural Engineering 34(3), 179-197. https://doi.org/10.1016/j.aquaeng.2005.09.004

Ebeling, J. M., Timmons, M. B., & Bisogni, J. J. (2006). Engineering analysis of the stoichiometry of photoautotrophic, autotrophic, and heterotrophic removal of ammonia-nitrogen in aquaculture systems. Aquaculture 257(1–4), 346-358. https://doi.org/10.1016/j.aquaculture.2006.03.019

Furtado, P. S., Campos, B. R., Serra, F. P., Klosterhoff, M., Romano, L. A., & Wasielesky, W. (2015). Effects of nitrate toxicity in the Pacific white shrimp, Litopenaeus vannamei, reared with biofloc technology (BFT). Aquaculture International 23(1), 315-327. https://doi.org/10.1007/s10499-014-9817-z

Gomez, K. A., & Gomez, A. A. (1984). Statistical procedures for agricultural research (2nd ed.). New Jersey, USA: John Wiley & Sons.

Kuhn, D. D., Smith, S. A., & Flick, G. J. (2011). High nitrate levels toxic to shrimp: Toxicity more of an issue in lower-salinity waters. Global Aquaculture Advocate. Global Aquaculture Alliance.

Legarda, E. C., Barcelos, S. S., Redig, J. C., Ram´ırez, N. C. B., Guimar˜aes, A. M., Santo, C. M. d. E., Seiffert, W. Q., & Vieira, F. d. N. (2018). Effects of stocking density and artificial substrates on yield and water quality in a biofloc shrimp nursery culture. Revista Brasileira de Zootecnia 47, e20170060. https://doi.org/10.1590/rbz4720170060

Lin, Y. C., & Chen, J. C. (2003). Acute toxicity of nitrite on Litopenaeus vannamei (Boone) juveniles at different salinity levels. Aquaculture 224(1-4), 193-201. https://doi.org/10.1016/S0044-8486(03)00220-5

Lin, Y. C., & Chen, J. C. (2001). Acute toxicity of ammonia on Litopenaeus vannamei Boone juveniles at different salinity levels. Journal of Experimental Marine Biology and Ecology 259(1), 109-119. https://doi.org/10.1016/S0022-0981(01)00227-1

MARD (Ministry of Agriculture and Rural Development). (2014). QCVN 02 - 19: 2014/BNNPTNT. National technical regulation on brackish water shrimp culture farm - Conditions for veterinary hygiene, environmental protection and food safety. Ha Noi, Vietnam: MARD.

Martin, J. L. M., Veran, Y., Guelorget, O., & Pham, D. (1998). Shrimp rearing: stocking density, growth, impact on sediment, waste output and their relationships studied through the nitrogen budget in rearing ponds. Aquaculture 164(1-4), 135-149. https://doi.org/10.1016/S0044-8486(98)00182-3

Moss, K. R. K., & Moss, S. M. (2004). Effects of artificial substrate and stocking density on the nursery production of Pacific white shrimp Litopenaeus vannamei. Journal of the World Aquaculture Society 35(4), 536- 542. https://doi.org/10.1111/j.1749-7345.2004.tb00121.x

Neto, I. A., Branda˜o, H., Furtado, P. S., & Wasielesky, Jr, W. (2019). Acute toxicity of nitrate in Litopenaeus vannamei juveniles at low salinity levels. Ciencia Rural 49(1), e20180439. https://doi.org/10.1590/0103-8478cr20180439

Nguyen, P. T., Vu, V. S., Nguyen, V. V., Nguyen, Q. T., Dang, T. D., Doan, T. N., Tran, T. M., & Vu, V. I. (2013). Effect of stocking density on growth rate and survival of white leg shrimp, Litopenaeus vannamei, raised on indoor composite tanks. Journal of Science and Development 11(2), 223-229.

Nguyen, T. V., Nguyen, T. P. C., & Nguyen, K. H. N. (2019). Roles of research and education in freshwater aquaculture development: A case of striped catfish farming in Viet Nam. In Figus, A., and Potempa, T. (Eds.). Bologna process and fisheries education for sustainable development (143-162). Roma, Italy: Eurilink University Press.

Sahu, B. C., Adhikari, S., & Dey, L. (2013). Carbon, nitrogen and phosphorus budget in shrimp (Penaeus monodon) culture ponds in eastern India. Aquaculture International 21 (2), 453-466. https://doi.org/10.1007/s10499-012-9573-x

Sookying, D., Silva, F. S. D., Davis, D. A., & Hanson, T. R. (2011). Effects of stocking density on the performance of Pacific white shrimp Litopenaeus vannamei cultured under pond and outdoor tank conditions using a high soybean meal diet. Aquaculture 319(1-2), 232- 239. https://doi.org/10.1016/j.aquaculture.2011.06.014

Valencia-Castan˜eda, G., Fr´ıas-Espericueta, M. G., Vanegas-P´erez, R. C., Ch´avez-S´anchez, M. C., & P´aez-Osuna, F. (2019). Toxicity of ammonia, nitrite and nitrate to Litopenaeus vannamei juveniles in low-salinity water in single and ternary exposure experiments and their environmental implications. Environmental Toxicology and Pharmacology 70, 103193. https://doi.org/10.1016/j.etap.2019.05.002

Wyk, P. V., & Scarpa, J. (1999). Water quality requirements and management. In Wyk, P. V., Davis Hodgkins, M., Laramore, R., Main, K. L., Mountain, J., and Scarpa, J. (Eds.). Farming marine shrimp in recirculating freshwater systems (141-162). Florida, USA: Florida Department of Agriculture and Consumer Services.

Yu, R., Leung, P., & Bienfang, P. (2009). Modeling partial harvesting in intensive shrimp culture: A network-flow approach. European Journal of Operational Research 193(1), 262-271. https://doi.org/10.1016/j.ejor.2007.10.031

Zaki, M. A., Nour, A. A., Abdel-Rahim, M. M., & Srour, T. M. (2004). Effect of stocking density on survival, growth performance, feed utilization and production of marine shrimp Penaeus semisulcatus in earthen ponds. Egyptian Journal of Aquatic Research 30(B), 429-442.