Son H. Pham , Thy N. Nguyen , Nhi Y. Huynh * , & Pamela McElwee

* Correspondence: Huynh Yen Nhi (email: nhi.huynhyen@hcmuaf.edu.vn)

Main Article Content

Abstract

As a gateway of Ho Chi Minh City to the sea, Can Gio district plays an important role in economy, society, defense, environment and international integration with a famous Can Gio biosphere reserve forest area. In the coming time, Can Gio district will have many large national projects. The development of Can Gio will also be associated with tasks and solutions to protect the biosphere. Therefore, monitoring land use/land cover (LULC) changes contributes to support sustainable Can Gio planning. In this study, multi-temporal Landsat satellite image data was used to extract land use information by Google Earth Engine (GEE). At the same time, the Geographic Information System (GIS) method was also used to process data layers and calculate LULC changes in 1990, 2000, 2010 and 2024. Research results showed that, from 1990 to 2024, the bare land or wasteland in Can Gio has been effectively converted. That had increased the area of land types such as: forest, residental- contructional and aquacultural land. Because of the forest restoration and forest protection policies of Government, local officials, youth volunteers and residents, the area of mangrove forest had been increased in Can Gio (1.8 times with 15,441 ha). Besides, the increase of population and economic development led increasing residental and constructional land areas (4.2 times with 875 ha). Study results also showed that GEE geospatial processing service is a useful solution for LULC analysis on a large scale such as Can Gio district. It contributes to quickly and effectively support the supervision of local authority in master planning, land use planning… where comprehensive and sustainable development is needed.

Keywords: Can Gio district, Google Earth Engine (GEE), Landsat, Land use/land cover change

Article Details

References

Amani, M., Brisco, B., Afshar, M., Mirmazloumi, S. M., Mahdavi, S., Mirzadeh, S. M. J., Huang, W., & Granger, J. (2019). A generalized supervised classification scheme to produce provincial wetland inventory maps: An application of Google Earth Engine for big geo data processing. Big Earth Data 3(4), 378-394. https://doi.org/10.1080/20964471.2019.1690404.

Berhane, T. M., Lane, C. R., Wu, S. Q., Autrey, B. C., Anenkhonov, O. A., Chepinoga, V. V, & Liu, X. H. (2018). Decision-tree, rule-based, and random forest classification of high-resolution multispectral imagery for wetland mapping and inventory. Remote Sensing 10(4), 580. https://doi.org/10.3390/rs10040580.

Breiman, L. (2001). Random forests. Machine Learning 45, 5-32. https://doi.org/10.1023/A:1010933404324.

Cohen, J. (1960). A coefficient of agreement for nominal scales. Educational and Psychological Measurement 20(1), 37-46. https://doi.org/10.1177/001316446002000104.

Congalton, R. G., Balogh, M., Bell, C., Green, K., Milliken, J. A., & Ottman, R. (1998). Mapping and monitoring agricultural crops and other land cover in the Lower Colorado River Basin. Photogrammetric Engineering and Remote Sensing 64(11), 1107-1114.

Ghorbanian, A., Zaghian, S., Asiyabi, R. M., Amani, M., Mohammadzadeh, A., & Jamali, S. (2021). Mangrove ecosystem mapping using Sentinel-1 and Sentinel-2 satellite images and random forest algorithm in Google Earth Engine. Remote Sensing 13(13), 2565. https://doi.org/10.3390/rs13132565.

Le, T. X., Phan, D. T. A., Tran, H. T. M., Nguyen, M. C., & Nguyen, H. T. T. (2021). Mangrove forests policy implementation: Case studies of Ngoc Hien and Can Gio mangrove forests in the Southern Vietnam. Preprints 2021, 2021010175. https://doi.org/Preprints. 2021010175.

Lunetta, R. S., Knight, J. F., Ediriwickrema, J., Lyon, J. G., & Worthy, L. D. (2022). Land-cover change detection using multi-temporal MODIS NDVI data. In Lyon, J. G., & Lyon, L. (Eds.). Geospatial information handbook for water resources and watershed management - Volume II. Florida, USA: CRC Press. https://doi.org/10.1201/9781003175025.

Mallupattu, P. K., & Reddy, J. R. S. (2013). Analysis of land use/land cover changes using remote sensing data and GIS at an Urban Area, Tirupati, India. The Scientific World Journal 2013(1), 268623. https://doi.org/10.1155/2013/268623.

Mu, X. H., Hu, M. G., Song, W. J., Ruan, G. Y., Ge, Y., Wang, J. F., Huang, S., & Yan, G. J. (2015). Evaluation of sampling methods for validation of remotely sensed fractional vegetation cover. Remote Sensing 7(12), 16164-16182. https://doi.org/10.3390/rs71215817.

Nam, V. N., Sinh, L. V., Miyagi, T., Baba, S., & Chan, H. T. (2014). An overview of Can Gio district and mangrove biosphere reserve. Vietnam Mangrove Ecosystems Technical Reports 6, 1-7.

Nguyen, H. T. T., Pham, T. V., & Nguyen, T. K. (2014). Assessing land use and land cover change: A case of Tien Yen District, Quang Ninh Province from 2000 to 2010. Journal of Science and Development 1(12), 43-51.

Nguyen, T. N. (2019). Three issues in Can Gio urban tourism project. Retieved March 10, 2023, from https://ir.vnulib.edu.vn/bitstream/VNUHCM/7654/1/N.T.%20NGUYEN%20 %282019%29%20Ba%20v%E1%BA%A5n%20 % C 4 % 9 1 % E 1 % B B % 8 1 % 2 0 t r o n g % 2 0 d % E 1 % B B % B 1 % 2 0 % C 3 % A 1 n % 2 0 %C4%91%C3%B4%20th%E1%BB%8B%20 d u % 2 0 l % E 1 % B B % 8 B c h % 2 0 C%E1%BA%A7n%20Gi%E1%BB%9D.pdf.

Nguyen, T. S. (2021). Strict control requirement for environmental problems of sea encroachment projects. Journal of Human Geography Research 33(2), 11-19.

PCHCMC (Ho Chi Minh City People’s Committee). (2024). Decision No. 1081/QD-UBND dated on April 3, 2024. Ho Chi Minh City People’s Committee on approving the land use plan of Can Gio district in 2024. Retrieved May 16, 2024, from https://thuvienphapluat.vn/van-ban/Bo-may-hanh-chinh/Quyet-dinh-1081-QD-UBND-2024-cong-bo-thu-tuchanh-chinh-the-duc-the-thao-nganh-Van-hoaDong-Nai-610242.aspx.

PCHCMC (Ho Chi Minh City People’s Committee). (2021). History of revolutionary struggle, construction and development of the Party Committee and People of Can Gio district. Ho Chi Minh City, Vietnam: Ho Chi Minh City General Publishing House.

Pelletier, C., Valero, S., Inglada, J., Champion, N., & Dedieu, G. (2016). Assessing the robustness of Random Forests to map land cover with high resolution satellite image time series over large areas. Remote Sensing of Environment 187, 156-168. https://doi.org/10.1016/j.rse.2016.10.010.

Pham, L. T. H., Vo, T. Q., Dang, T. D., & Nguyen, U. T. N. (2019). Monitoring mangrove association changes in the Can Gio biosphere reserve and implications for management. Remote Sensing Applications: Society and Environment 13, 298-305. https://doi.org/10.1016/j.rsase.2018.11.009.

Pham, T. H., Ngo, T. V., Pham, T. T., Bui, T. T., & Nguyen, G. T. L. (2022). The contribution of mangroves in supporting the reduction of emissions and pollution from port activities (Report No. 230). Bogor, Indonesia: Center for International Forestry Research - CIFOR. https://doi.org/10.17528/cifor/008487.

Shelestov, A., Lavreniuk, M., Kussul, N., Novikov, A., & Skakun, S. (2017). Exploring Google Earth Engine platform for big data processing: Classification of multi-temporal satellite imagery for crop mapping. Frontiers in Earth Science 5, 232994. https://doi.org/10.3389/feart.2017.00017.

Singh, S., Nguyen, L. V., & Truong, B. T. H. (2021). Monitoring mangrove forest reclamation using geospatial tools in Can Gio mangrove biosphere reserve, Viet Nam. International Journal of Ecology and Environmental Sciences 39(3), 147-157.

VAN (Vietnam Agriculture Newspaper). (2012). Can Gio miracle. Retrieved April 1, 2024, from https://nongnghiep.vn/ky-tich-can-gio-d99724.html.

Van Genderen, J. L., & Lock, B. F. (1977). Testing landuse map accuracy. Photogrammetric Engineering and Remote Sensing 43(9), 1135-1137.

Wan, B., Guo, H. Q., Fang, F., Su, J. Y., & Wang, R. (2015). Mapping US urban extents from MODIS data using one-class classification method. Remote Sensing 7(8), 10143-10163. https://doi.org/10.3390/rs70810143.