Nhu T. Q. Nguyen * , Tram T. Q. Le , Nguyen V. Dang , Mi T. M. Nguyen , Trang T. Dong , Thieu Q. Nguyen , & Phat X. Dinh

* Correspondence: Nguyen Thi Quynh Nhu (email: 19126127@st.hcmuaf.edu.vn)

Main Article Content

Abstract

Tight junction (TJ) proteins play a critical function in forming a strong intestinal barrier that protects against ingested pathogens and harmful agents. This study aimed to utilize multiplex RT PCR (mRT-PCR) to assess the expression of ZO-1, Claudin-1, and Occludin genes at mRNA level in the intestines of pigs using specific primer pairs yielding amplicons of 167 bp, 500 bp, and 235 bp, respectively. The mRT-PCR protocol was optimized for annealing temperature and primer concentrations, including primer specificity, and determining the limit of detection. Subsequently, the optimized mRT-PCR was applied to detect these genes in 48 pig intestinal samples, including duodenum, jejunum and ileum. The mRT-PCR demonstrated specificity for these genes with the annealing temperature at 58°C. The primer pair ratio for ZO-1, Claudin-1, and Occludin was 0.4 µM:0.4 µM:0.4 µM (2:2:2). The detection rate for ZO-1, Claudin-1, and Occludin genes were 83.33% (40/48), 29.17% (14/48) and 4.17% (2/48) respectively. Intriguingly, one sample tested positive for all three mRNA, while negative results were observed in 12.5% of the samples. In conclusion, in the present study, the mRT-PCR was successfully established to detect ZO-1, Claudin-1, and Occludin expression in pig intestinal tissues.

Keywords: Claudin-1, mRT-PCR, Occludin, pig, ZO-1

Article Details

References

Anderson, J. M., & Van Itallie, C. M. (2009). Physiology and function of the tight junction. Cold Spring Harbor Perspectives in Biology 1(2), a002584.

Dong, Y. X., Xu, Q. Q., Wang, C., Zou, T. X., & Lu, J. J. (2019). Supplemental-coated zinc oxide relieves diarrhoea by decreasing intestinal permeability in weanling pigs. Journal of Applied Animal Research 47(1), 362-368. https://doi.org/10.1080/09712119.2019.1645673.

Furuse, M., Fujita, K., Hiiragi, T., Fujimoto, K., & Tsukita, S. (1998). Claudin-1 and-2: Novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. The Journal of Cell Biology 141(7), 1539. https://doi.org/10.1083%2Fjcb.141.7.1539.

González-Mariscal, L., Betanzos, A., & Ávila-Flores, A. (2000). MAGUK proteins: Structure and role in the tight junction. Seminars in Cell and Developmental Biology 11(4), 315-324. https://doi.org/10.1006/scdb.2000.0178.

Liu, H. W., Mi, M. S., Ruan, Z., Li, J., Shu, G. X., Yao, K., Jiang, M., & Deng, Y. Z. (2017). Dietary tryptophan enhanced the expression of tight junction protein ZO‐1 in intestine. Journal of Food Science 82(2), 562-567. https://doi.org/10.1111/1750-3841.13603.

Luo, L. X., Guo, J. L., Zhang, J., Xu, F. Y., Gu, H. W., Feng, L., & Wang, Y. (2017). Tight junction protein occludin is a porcine epidemic diarrhea virus entry factor. Journal of Virology 91(10), e00202-17. https://doi.org/10.1128/jvi.00202-17.

Otani, T., & Furuse, M. (2020). Tight junction structure and function revisited. Trends in Cell Biology 30(10), 805-817. https://doi.org/10.1016/j.tcb.2020.08.004.

Sheth, B., Fontaine, J. J., Ponza, E., McCallum, A., Page, A., Citi, S., Louvard, D., Zahraoui, A., & Fleming, T. P. (2000). Differentiation of the epithelial apical junctional complex during mouse preimplantation development: A role for rab13 in the early maturation of the tight junction. Mechanisms of Development 97(1-2), 93-104. https://doi.org/10.1016/S0925-4773(00)00416-0.

Shin, K., Fogg, V. C., & Margolis, B. (2006). Tight junctions and cell polarity. Annual Review of Cell and Developmental Biology 22(1), 207-235. https://doi.org/10.1146/annurev.cellbio.22.010305.104219.

Wijtten, P. J. A., van der Meulen, J., & Verstegen, M. W. A. (2011). Intestinal barrier function and absorption in pigs after weaning: A review.British Journal of Nutrition 105(7), 967-981. https://doi.org/10.1017/S0007114510005660.

Wu, T. J., He, M. C., Bu, J., Luo, Y., Yang, Y. S., Ye, Y. C., Yu, L. S., He, S. B., Yin, L. Y., & Yang, P. X. (2020). Betaine attenuates LPS-induced downregulation of Occludin and Claudin-1 and restores intestinal barrier function. BMC Veterinary Research 16(1), 75. https://doi.org/10.1186/s12917-020-02298-3.

Zhang, X. M., Huang, Y., Zhang, K., Qu, L. H., Cong, X., Su, J. Z., Wu, L. L., Yu, G. Y., & Zhang, Y. (2018). Expression patterns of tight junction proteins in porcine major salivary glands: A comparison study with human and murine glands. Journal of Anatomy 233(2), 167-176. https://doi.org/10.1111/joa.12833.