Van T. Tran * , Quyen T. N. Vo , Toan Q. Dinh , Khanh T. V. Nguyen , Linh T. N. Nguyen , Thang D. Nguyen , & Don D. Le

* Correspondence: Tran Thi Van (email: van.tranthi@hcmuaf.edu.vn)

Main Article Content

Abstract

Vegetable cultivation is essential to Vietnam’s agricultural development strategy. Meloidogyne spp. has caused a root-knot disease which is dangerous due to decreased plant vitality, yield, and quality. This research aimed to select fungal strains controlling Meloidogynes spp., which causes root knots in vegetable plants. As a result, strains of the fungi Paecilomyces sp., Mariannaea sp., and Penicillium sp. effectively inactivated second-stage juveniles (J2) after 72 h of inoculum. Specifically, Paecilomyces sp. was immobilized in 64.5% of the nematodes, Mariannaea sp. was 72%, and Penicillium sp. was 70%, compared to only 13.5% in the control group without fungal inoculation. In a net house experiment investigating the influence of fungal strains on J2 in Malabar spinach (Basella alba L.), the Mariannae sp. strain inoculated on plants at a density of 107 cfu/mL produced the best results in terms of root length (25.3 cm) and root weight (0.4 g) compared to the control uninoculation (18.5 cm; 0.3 g) and the control with only the nematode (11.2 cm; 0.2 g). Additionally, the Mariannaea sp. strain significantly reduced the number of juvenile nematodes per 50 g of soil (15.7 J2) compared to the control (160 J2) in Malabar spinach (Basella alba L.) in a net house.

Keywords: Mariannaea sp., Meloidogyne spp., Nematode-trapping fungi, Paecilomyces sp., Penicillium sp.

Article Details

References

Berhanu, M., Waktole, H., Mamo, G., & Terefe G. (2022). Isolation of nematophagous fungi from soil samples collected from three different agroecologies of Ethiopia. BMC Microbiology 22, 159-164. https://doi.org/10.1186/s12866-022-02572-4.

Bilal, S., Shahzad, R., Khan, A. L., Al-Harrasi, A., Kim, C. K., & Lee, I. J. (2019). Phytohormones enabled endophytic Penicillium funiculosum LHL06 protects Glycine max L. from synergistic toxicity of heavy metals by hormonal and stress-responsive proteins modulation. Journal of Hazard Mater (379), 120824. https://doi.org/10.1016/j.jhazmat.2019.120824.

Cobb, N. A. (1917). A genus of freedom living predatory nematodes: Contributions to a Science of Nematology VI: (With 75 Illustration in the Text). Soil Science 3(5), 431-486.

Dávila, L., & Hío, J. C. (2005). Evaluation of activity biocontroller of Arthrobotrys sp. and Paecilomyces sp. on Meloidogyne javanica under in vitro and greenhouse conditions in chrysanthemum (Drendranthema grandiflora Andernson). Agronomia Colombiana 23(1), 91-101.

Devi, G. (2018). Utilization of nematode destroying fungi for management of plant-parasitic nematodes-a review. Biosciences Biotechnology Reasearch Asia. 15(2), 377-396. http://dx.doi.org/10.13005/bbra/2642.

Elgharably, A., & Nafady, N. A. (2021). Inoculation with Arbuscular mycorrhizae, Penicillium funiculosum and Fusarium oxysporum enhanced wheat growth and nutrient uptake in the saline soil. Rhizosphere 18(1), 100345. https://doi.org/10.1016/j.rhisph.2021.100345.

Favre-Bonvin, J., Ponchet, M., Djian, C., Arpin, N., & Pijarowski, L. (1991). Acetic acid: A selective nematicidal metabolite from culture filtrates of Paecilomyces lilacinus (Thom) Samson and Trichoderma longibrachiatum Rifai. Nematologica 37, 101-112.

Giuma, A. Y., & Cooke, R. C. (1971). Nematotoxin production by Nematoctonus haptocladus and N. concurrens. Transactions of The British Mycological Society 56(1), 89-IN6.

Gouli, V., Provost, C., Gouli, S., Parker, B. L., & Skinner, M. (2013). Productivity of different species of entomopathogenic fungi based on one type of technology. International Journal of Agricultural Technology 9(3), 571-580.

Hsueha, Y. P., Mahantib, P., Schroederb, F. C., & Sternberg, P. W. (2013). Nematode-trapping fungi eavesdrop on nematode pheromones. Current Biology 23(1), 83-86.

Hutchinson, C. M., McGiffen, M. E., Ohr, H. D., Sims, J. J., & Becker J. O. (1999). Efficacy of methyl iodide soil fumigation for control of Meloidogyne incognita, Tylenchulus semipenetrans and Heterodera schachtii. Nematology 1, 407-414.

Jatala, P. (1986). Biological control of plant-parasitic nematodes. Annual Review of Phytopathology 24(1), 453-489.

Jin, X., Xin, Y., Zhang, H., & Cui, J. L. (2022). The microscopic mechanism between endophytic fungi and host plants: from recognition to building stable mutually beneficial relationships. Microbiology Research 261, 127056. https://doi.org/10.1016/j.micres.2022.127056.

Khan, A., Williams, K. L., & Nevalainen, H. K. (2006). Control of plant-parasitic nematodes by Paecilomyces lilacinus and Monacrosporium lysipagum in pot trials. Biocontrol 51, 643-658. https://doi.org/10.1007/s10526-005-4241-y.

Lara, J., Acosta, N., Betancourt, C., Vincente, N., & Rodriguez, R. (1996). Biological control of Meloidogyne incognita in tomato in Puerto Rico. Nematropica 26, 143-152.

Larsen, M. (2002). Biological control in a global perspective–a review with emphasis on Duddingtonia flagrans. In Biological control of Nematode parasites of small ruminants in Asia. (1st ed.,19-37). Kualar Lumpur, Malaysia: FAO.

Li, T. F., Zhang, K. Q., & Liu, X. Z. (2000). Taxonomy of nematophagous fungi. Beijing, China: Chinese Scientific and Technological Publications.

Liang, Y. J, Ariyawansa, H. A., Becker, J. O., & Yang, J. (2020). The evaluation of egg-parasitic fungi Paraboeremia taiwanensis and Samsoniella sp. for the biological control of Meloidogyne enterolobiion Chinese cabbage. Microorganisms 8(6), 828-831. https://doi.org/10.3390/microorganisms8060828.

Linford, M. B., & Oliviera, J. M. (1937). The feeding of hollow-spear nematodes on other nematodes. Science 85(2203), 295-297.

Liu, X., Xiang, M., & Che, Y. (2009). The living strategy of nematophagous fungi. Mycoscience 50(1), 20-25.

Lopez-Llorca, L. V., Maciá-Vicente, J. G., & Jansson, H. B. (2008). Mode of action and interactions of nematophagous fungi. In Ciancio, A., & Mukerji, K. G. (Eds.). Integrated management and biocontrol of vegetable and grain crops nematodes (1st ed., 51-76). Dordrecht, Netherlands: Spinger.

Luangsa-Ard, J., Houbraken, J., van Doorn, T., Hong, S. B., Borman, A. M., Hywel-Jones, N. L., & Samson, R. A. (2011). Purpureocillium, a new genus for the medically important Paecilomyces lilacinus. FEMS Microbiology Letters 321(2), 141-149. https://doi.org/10.1111/j.1574-6968.2011.02322.x.

Luc, M., Sikora, R. A., & Bridge, J. (2005). PlantParasitic nematodes in subtropical and tropical agriculture (2nd ed.). Oxford, UK: Oxford University Press.

Maehara, N., & Futai, K. (2000). Population changes of the pinewood nematode, Bursaphelenchus xylophilus (Nematoda: Aphelenchoididae), on fungi growing in pine-branch segments. Applied Entomology and Zoology 35(3), 413-417.

MARD (Ministry of Agriculture and Rural Development). (2016). Circular No. 07/2016/TT-BNNPTNT dated on May 31, 2016. Prevention and control of terrestrial animal diseases. Retrieved March 14, 2023, from https://thuvienphapluat.vn/van-ban/EN/Thethao-Y-te/Circular-07-2016-TT-BNNPTNTprevention-of-terrestrial-animal-diseaseepidemic/527004/tieng-anh.aspx.

Martez, J. L., Acosta, N., Betancourt, C., Vincente, N., & Rodriguez, R. (1996). Biological control of Meloidogyne incognita in tomato in Puerto Rico. Nematropica 26(2), 143-152.

Messa, V. R., da Costa, A. C., Kuhn, O. J., & Stroze, C. T. (2020). Nematophagous and endomycorrhizal fungi in the control of Meloidogyne incognita in soybean. Rhizosphere 15, 100222. https://doi.org/10.1016/j.rhisph.2020.100222.

Meyer, S. L. (1999). Efficacy of the fungus Verticillium lecanii for suppressing root-knot nematode egg numbers on Cantaloupe roots. HortTechnology 9, 443-447.

Miao, G. P., Han, J., Zhang, K. G., Wang, S. C., & Wang, C. R. (2019). Protection of melon against Fusarium wilt-root knot nematode complex by endophytic fungi Penicillium brefeldianum HS-1. Symbiosis 77, 83-89. https://doi.org/10.1007/s13199-018-0565-0.

Moreno-Gavíra, A., Huertas, V., Diánez, F., Santos, M., & Sánchez-Montesinos, B. (2020). Paecilomyces and its importance in the biological control of agricultural pests and diseases. Plant Disease. 9(12), 1-28. https://doi.org/10.3390/plants9121746.

Naz, I., Khan, R. A. A., Masood, T., Baig, A., Siddique, I., & Haq, S. (2021). Biological control of root knot nematode, Meloidogyne incognita, in vitro, greenhouse and field in cucumber. Biological Control. 152, 104429. https://doi.org/10.1016/j.biocontrol.2020.104429.

Nguyen, S. D., Trinh, T. H. T., Tran, T. D., Nguyen, T. V., Chuyen, H. V., Ngo, V. A., & Nguyen, A. D. (2021). Combined application of rhizosphere bacteria with endophytic bacteria suppresses root diseases and increases productivity of black pepper (Piper nigrum L.). Agriculture 11(1), 15.

Nico, A. I., Jiménez-Dıaz, R. M., & Castillo, P. (2004). Control of root-knot nematodes by composted agro-industrial wastes in potting mixtures. Crop Protection 23(7), 581-587.

Nordbring-Hertz, B., Jansson, H. B., & Tunlid, A. (2006). Nematophagous fungi. Encyclopedia of Life Sciences 1-11. https://doi.org/10.1038/npg.els.0004293.

Olivares-Bernabeu, C. M., & López-Llorca, L. V. (2002). Fungal egg-parasites of plantparasitic nematodes from Spanish soils. Revista Iberoamericana de Micología 19(2), 104-110.

Perry, R. N., Moens, M., & Starr, J. L. (2009). Rootknot Nematodes (Illustrated ed.). California, USA: CAB International.

Poveda, J., Abril-Urias, P., & Escobar, C. (2020). Biological control of plant-parasitic nematodes by filamentous fungi inducers of resistance: Trichoderma, mycorrhizal and endophytic fungi. Frontiers in Microbiology 11(5), 1-14.

Pramer, D., & Stoll, N. R. (1959). Nemin: A morphogenic substance causing trap formation by predaceous fungi. Science 129(3354), 966-967.

Rajasekharan, S. K., Raorane, C. J., & Lee, J. (2018). LED based real-time survival bioassays for nematode research. Scientific Reports 8(1), 11531. https://doi.org/10.1038/s41598-018-30016-5.

Raper, K. B., & Fennell, D. I. (1965). The Genus Aspergillus (1st ed.). Philadelphia, USA: Williams & Wilkins. Samson, R. A. (1974). Paecilomyces and some allied hyphomycetes. Utrecht, Netherlands: Entraalbureau voor Schimmelcultures. Sharon, E., Chet, I., Viterbo, A., Bar-Eyal, M., Nagan, H., Samuels, G. J., & Spiegel, Y. (2007). Parasitism of Trichoderma on Meloidogyne javanica and role of the gelatinous matrix. European Journal of Plant Pathology 118, 247-258. https://doi.org/10.1007/s10658-007-9140-x.

Shin, J. C., Shrestha, B., Lee, W. H., Park, Y. J., Kim, S. Y., Jeong, G. R., Kim, H. K., Kim T. W., & Sung, J. M. (2004). Distribution and favorable conditions for mycelial growth of Cordyceps pruinosa in Korea. The Korean Journal of Mycology 32(2), 79-88. https://doi.org/10.4489/KJM.2004.32.2.079.

Sikandar, A., Zhang, M. Y., Zhu, X. F., Wang, Y. Y., Ahmed, M., Iqbal, M. F., Javeed, A., Xuan, Y. H., Fan, H. Y., Liu, X. Y., Chen, L. J., & Duan, Y. X. (2019). Effects of Penicillium chrysogenum strain Snef1216 against rootknot nematodes (Meloidogyne incognita) in cucumber (Cucumis sativus L.) under greenhouse conditions. Applied Ecology and Environmental Research 17(5), 12451-12464. https://doi.org/10.15666/aeer/1705_1245112464.

Sikandar, A., Zhang, M., Wang, M., Zhu, X., Liu, X., Fan, H., Xuan, Y., Chen, L., & Duan, Y. (2020). In vitro evaluation of Penicillium chrysogenum Snef1216 against Meloidogyne incognita (root-knot nematode). Scientific Reports 10(1), 8342. https://doi.org/10.1038/s41598-020-65262-z.

Singh, S., & Mathur, N. (2010). In vitro studies of antagonistic fungi against the root-knot nematode Meloidogyne incognita. Biocontrol Science and Technology 20(3), 275-282.

Southey, J. F. (1986). Laboratory methods for work with plant and soil nematodes (6th ed.). London, UK: Ministry of Agriculture, Fisheries and Food.

Swe, A., Li, J., Zhang, K. Q., Pointing, S. B., Jeewon, R., & Hyde, K. D. (2011). Nematode-trapping fungi. Current Research in Environmental and Applied Mycology 1(1), 1-26.

Tunlid, A., Jansson, H. B., & Nordbring-Hertz, B. (1992). Fungal attachment to nematodes. Mycological Research 96(6), 401-412. https://doi. org/10.1016/S0953-7562(09)81082-4.

Visagie, C. M, Houbraken, J., Frisvad, J. C., Hong, S. B., Klaassen, C. H. W., Perrone, G., Seifert, K. A., Varga, J., Yaguchi, T., & Sasmon, R. A. (2014). Identification and nomenclature of the genus Penicillium. Studies in Mycology 78(1), 343-371. https://doi.org/10.1016/j.simyco.2014.09.001.

VS (Vietnam Standards). (2020). Standard No. TCVN 12194-2-4-2020 dated on December 31, 2020. Procedure for identification of plant parasitic nematodes. Part 2-4: Particular requirements for Meloidogyne spp. Retrieved June 15, 2023, from https://tieuchuan.vsqi.gov.vn/tieuchuan/view?sohieu=TCVN+12194-2-4%3A2020.

Xiang, N., & Lawrence, K. S. (2016). Optimization of In vitro techniques for distinguishing between live and dead second stage juveniles of Heterodera glycines and Meloidogyne incognita. Plos One 11(5), 0154818. https://doi.org/10.1371/journal.pone.0154818.

Zhao, X., Ni, Y., Zhao, H., Liu, X., He, B., Shi, B., Ma, Q., & Liu, H. (2021). Plant growth-promoting ability and control efficacy of Penicillium aurantiogriseum 44M-3 against sesame Fusarium wilt disease. Biocontrol Science and Technology 31(12), 1314-1329. https://doi.org/10.1080/09583157.2021.1946011.