Dung T. N. Dang *

* Correspondence: Dang Thi Ngoc Dung (email: dzungdang@hcmute.edu.vn)

Main Article Content

Abstract

Peanuts (Arachis hypogaea) are highly nutritious exerting health benefits such as preventing malnutrition, reducing heart disorders, and potentially prevent certain types of cancer. Kefir is one of the fermented dairy products containing probiotics and renowned for its beneficial effects on human health. This study aimed to evaluate the effects of gelatin concentration, fermentation temperature, and starter culture ratios on pH, the rheological properties, texture properties, and SEM (scanning electron microscope) of peanut kefir. The rheological properties of Peanut kefir exhibited pseudo plastic behavior (0 < η < 1) and weak gel properties. Peanut kefir’s rheological characteristics (viscosity, shear stress) and texture properties (hardness, adhesiveness, adhesive force) changed with gelatin content, fermentation temperature, and starter culture ratio. The FTIR spectrum of the gel peanut kefir sample was similar to that of the control sample. The optimal conditions for producing peanut kefir were 0.5% gelatin content, fermentation temperature of 25oC for 13 h, and a 5% starter culture ratio, resulting in a smooth kefir surface structure and a well-bound kefir gel. The SEM images revealed that the experimental sample exhibited a stable gel texture and no layer separation compared to the control sample. Generally, gelatin content, fermentation temperature, and starter culture ratio significantly influenced the quality of peanut kefir.

Keywords: Rheology, SEM, Shear stress, Viscosity

Article Details

References

Ahmed, J., Mulla, M., Al‐Ruwaih, N., & Arfat, Y. A. (2019). Effect of high‐pressure treatment prior to enzymatic hydrolysis on rheological, thermal, and antioxidant properties of lentil protein isolate. Legume Science 1(1), e10. https://doi.org/10.1002/leg3.10.

AOAC (Association of Official Analytical Chemists). (2000). Official methods of analysis (17th ed.). Maryland, USA: AOAC Intl.

Ares, G., Gonçalvez, D., Pérez, C., Reolón, G., Segura, N., Lema, P., & Gámbaro, A. (2007). Influence of gelatin and starch on the instrumental and sensory texture of stirred yogurt. International Journal of Dairy Technology 60(4), 263-269. https://doi.org/10.1111/j.1471-0307.2007.00346.x.

Bensmira, M., & Jiang, B. (2012). Effect of some operating variables on the microstructure and physical properties of a novel Kefir formulation. Journal of Food Engineering 108(4), 579-584. https://doi.org/10.1016/j.jfoodeng.2011.07.025.

Botelho, P. S., Maciel, M. I. S., Bueno, L. A., Marques, M. D. F. F., Marques, D. N., & Silva, T. M. S. (2014). Characterisation of a new exopolysaccharide obtained from of fermented kefir grains in soymilk. Carbohydrate Polymers 107(1), 1-6. https://doi.org/10.1016/j.carbpol.2014.02.036.

Bourrie, B. C. T., Diether, N., Dias, R. P., Nam, S. L., De La Mata, A. P., Forgie, A. J., Gaur, G., Harynuk, J. J., Gänzle, M., Cotter, P. D., & Willing, B. P. (2023). Use of reconstituted kefir consortia to determine the impact of microbial composition on kefir metabolite profiles. Food Research International 173(Pt.2), 113467. https://doi.org/10.1016/j.foodres.2023.113467.

Chen, Z., Shi, J., Yang, X., Nan, B., Liu, Y., & Wang, Z. (2015). Chemical and physical characteristics and antioxidant activities of the exopolysaccharide produced by Tibetan kefir grains during milk fermentation. International Dairy Journal, 43, 15–21. https://doi.org/10.1016/j.idairyj.2014.10.004.

Diarra, K., Nong, Z. G., & Jie, C. (2005). Peanut milk and peanut milk based products production: A review. Critical Reviews in Food Science and Nutrition, 45(5), 405–423. https://doi.org/10.1080/10408390590967685.

Dimitreli, G., & Antoniou, K. D. (2011). Effect of incubation temperature and caseinates on the rheological behaviour of Kefir. Procedia Food Science 1, 583-588. https://doi.org/10.1016/j.profoo.2011.09.088.

Dwivedi, S., Puppala, N., Maleki, S., Ozias‐Akins, P., & Ortiz, R. (2014). Peanut improvement for human health. In Janick, J. (Ed.). Plant breeding reviews: Volume 38 (1st ed., 143-186). New Jersey, USA: John Wiley & Sons. https://doi.org/10.1002/9781118916865.ch04.

Egea, M. B., Dos Santos, D. C., de Oliveira Filho, J. G., da Costa Ores, J., Takeuchi, K. P., & Lemes, A. C. (2022). A review of nondairy kefir products: Their characteristics and potential human health benefits. Critical Reviews in Food Science and Nutrition 62(6), 1536-1552. https://doi.org/10.1080/10408398.2020.1844140.

Frengova, G. I., Simova, E. D., Beshkova, D. M., & Simov, Z. I. (2002). Exopolysaccharides produced by lactic acid bacteria of kefir grains. Zeitschrift Für Naturforschung C 57(9-10), 805-810. https://doi.org/10.1515/znc-2002-9-1009.

González-Orozco, B. D., García-Cano, I., JiménezFlores, R., & Alvárez, V. B. (2022). Invited review: Milk kefir microbiota - direct and indirect antimicrobial effects. Journal of Dairy Science 105(5), 3703-3715. https://doi.org/10.3168/jds.2021-21382.

Guénard-Lampron, V., Bosc, V., St-Gelais, D., Villeneuve, S., & Turgeon, S. L. (2020). How do smoothing conditions and storage time change syneresis, rheological and microstructural properties of nonfat stirred acid milk gel? International Dairy Journal 109, 104780. https://doi.org/10.1016/j.idairyj.2020.104780.

Gul, O., Atalar, I., Mortas, M., & Dervisoglu, M. (2018). Rheological, textural, colour and sensorial properties of kefir produced with buffalo milk using kefir grains and starter culture: A comparison with cows’ milk kefir. International Journal of Dairy Technology 71(S1), 73-80. https://doi.org/10.1111/1471-0307.12503.

Hassan, A. N., Ipsen, R., Janzen, T., & Qvist, K. B. (2003). Microstructure and rheology of yogurt made with cultures differing only in their ability to produce exopolysaccharides. Journal of Dairy Science 86(5), 1632-1638. https://doi.org/10.3168/jds.S0022-0302(03)73748-5.

Li, C., Li, W., Chen, X., Feng, M., Rui, X., Jiang, M., & Dong, M. (2014). Microbiological, physicochemical and rheological properties of fermented soymilk produced with exopolysaccharide (EPS) producing lactic acid bacteria strains. LWT - Food Science and Technology, 57(2), 477–485. https://doi.org/10.1016/j.lwt.2014.02.025.

Long, H. G., Ji, Y., Pan, B. H., Sun, W. Z., Li, T. Y., & Qin, X. G. (2015). Characterization of thermal denaturation structure and morphology of soy glycinin by FTIR and SEM. International Journal of Food Properties 18(4), 763-774. https://doi.org/10.1080/10942912.2014.908206.

Lopes, R. P., Mota, M. J., Pinto, C. A., Sousa, S., Silva, J. A. L. D., Gomes, A. M., Delgadillo, I., & Saraiva, J. A. (2019). Physicochemical and microbial changes in yogurts produced under different pressure and temperature conditions. LWT 99, 423-430. https://doi.org/10.1016/j.lwt.2018.09.074.

Luo, W. Y., Liu, Q. X., & Pang, H. Z. (2019). Triborheological properties of acid milk gels with different types of gelatin: Effect of concentration. Journal of Dairy Science 102(9), 7849-7862. https://doi.org/10.3168/jds.2019-16305.

Man, L.V.V. (2010). Textbook of technology for manufacturing dairy products and mixed drinks. Ho Chi Minh City, Vietnam: Ho Chi Minh City National University publishing House.

Mæhre, H., Dalheim, L., Edvinsen, G., Elvevoll, E., & Jensen, I.-J. (2018). Protein determinationmethod matters. Foods, 7(1), 5. https://doi.org/10.3390/foods7010005.

Mechmeche, M., Ksontini, H., Hamdi, M., & Kachouri, F. (2019). Production of bioactive peptides in tomato seed protein isolate fermented by water kefir culture: Optimization of the fermentation conditions. International Journal of Peptide Research and Therapeutics 25(1), 137-150. https://doi.org/10.1007/s10989-017-9655-8.

Mellema, M., Walstra, P., Van Opheusden, J. H. J., & Van Vliet, T. (2002). Effects of structural rearrangements on the rheology of rennetinduced casein particle gels. Advances in Colloid and Interface Science 98(1), 25-50. https://doi.org/10.1016/S0001-8686(01)00089-6.

Nguyen, P. T. M., Kravchuk, O., Bhandari, B., & Prakash, S. (2017). Effect of different hydrocolloids on texture, rheology, tribology and sensory perception of texture and mouthfeel of low-fat pot-set yoghurt. Food Hydrocolloids 72, 90-104. https://doi.org/10.1016/j.foodhyd.2017.05.035.

Pang, H. Z., Cao, N. J., Zheng, M. Y., Luo, W. Y., Liu, Q. X., & Xiao, L. (2019a). Effects of different types of hydrocolloids on texture and rheological properties of soymilk yogurt. Food and Fermentation Industries 45(3), 1-6. https://doi.org/10.13995/j.cnki.11-1802/ts.018305.

Pang, H. Z., Xu, L. R., Zhu, Y., Li, H., Bansal, N., & Liu, Q. X. (2019b). Comparison of rheological, tribological, and microstructural properties of soymilk gels acidified with glucono-δ-lactone or culture. Food Research International 121, 798-805. https://doi.org/10.1016/j.foodres.2018.12.062.

Purwandari, U., Shah, N. P., & Vasiljevic, T. (2007). Effects of exopolysaccharide-producing strains of Streptococcus thermophilus on technological and rheological properties of set-type yoghurt. International Dairy Journal 17(11), 1344-1352. https://doi.org/10.1016/j.idairyj.2007.01.018.

Said, M. I. (2020). Role and function of gelatin in the development of the food and non-food industry: A review. IOP Conference Series: Earth and Environmental Science 492(1), 012086. https://doi.org/10.1088/1755-1315/492/1/012086.

Salari, M., Khiabani, M. S., Mokarram, R. R., Ghanbarzadeh, B., & Kafil, H. S. (2019). Preparation and characterization of cellulose nanocrystals from bacterial cellulose produced in sugar beet molasses and cheese whey media. International Journal of Biological Macromolecules 122, 280-288. https://doi.org/10.1016/j.ijbiomac.2018.10.136.

Saygili, D., Döner, D., İÇiEr, F., & Karagözlü, C. (2022). Rheological properties and microbiological characteristics of kefir produced from different milk types. Food Science and Technology 42, e32520. https://doi.org/10.1590/fst.32520.

Settaluri, V. S., Kandala, C. V. K., Puppala, N., & Sundaram, J. (2012). Peanuts and their nutritional aspects - A review. Food and Nutrition Sciences 3(12), 1644-1650. http://dx.doi.org/10.4236/fns.2012.312215.

Shiva Dadkhah, R. P., Mahnaz Mazaheri Assadib and Ali Moghimic. (2011). Kefir production from soymilk. Annals of Biological Research, 293-299.

Supavititpatana, P., Wirjantoro, T. I., Apichartsrangkoon, A., & Raviyan, P. (2008). Addition of gelatin enhanced gelation of corn-milk yogurt. Food Chemistry 106(1), 211-216. https://doi.org/10.1016/j.foodchem.2007.05.058.

Syed, F., Arif, S., Ahmed, I., & Khalid, N. (2021). Groundnut (peanut) (Arachis hypogaea). In Tanwar, B., & Goyal, A. (Eds.). Oilseeds: Health attributes and food applications (93-122). Beach Road, Singapore: Springer. https://doi.org/10.1007/978-981-15-4194-0_4.

Temiz, H., & Çakmak, E. (2018). The effect of microbial transglutaminase on probiotic fermented milk produced using a mixture of bovine milk and soy drink. International Journal of Dairy Technology 71(4), 906-920. https://doi.org/10.1111/1471-0307.12521.

Tian, R., Feng, R. J., Huang, G., Tian, B., Zhang, Y., Jiang, Z. L., & Sui, N. X. (2020). Ultrasound driven conformational and physicochemical changes of soy protein hydrolysates. Ultrasonics Sonochemistry 68, 105202. https://doi.org/10.1016/j.ultsonch.2020.105202.

Xiao, R., Liu, M., Tian, Q., Hui, M., Shi, X., & Hou, G. X. (2023). Physical and chemical properties, structural characterization and nutritional analysis of kefir yoghurt. Frontiers in Microbiology 13, 1107092. https://doi.org/10.3389/fmicb.2022.1107092.