Quyen T. Nguyen , Anh T. Ton , Diep T. X. Pham , Vy H. T. Nguyen , & Minh T. L. Tran *

* Correspondence: Tran Thi Le Minh (email: ttlminh@hcmuaf.edu.vn)

Main Article Content

Abstract

Ngoc Linh ginseng is a valuable medicinal crop recognized for its anti-amnesia, anti-inflammatory, hepatoprotective, and anti-cancer properties. This study was to investigate the variation effect of growth regulators and culture conditions for micropropagation of Ngoc Linh ginseng (Panax vietnamensis Ha et Grushv.) on a temporary immersion system. After ten weeks of cultivation, the best callus induction rate in a solid Murashige and Skoog (MS) medium containing 2,4-dichlorophenoxyacetic acid (2,4-D) 1.5 mg/L was 90%. Callus cultured on MS medium (indole-3-butyric acid (IBA) 0.7 mg/L) supplemented with Thidiazuron (TDZ) 0.8 mg/L resulted in the highest embryogenesis rate, reaching 69.29%, with an average of 11.25 embryos per explant. The MS medium supplemented with 6-benzylaminopurine (BAP) 1 mg/L and α-naphthalene acetic acid (NAA) 1 mg/L was shown to be appropriate for shoot growth from Ngoc Linh ginseng embryos. The temporary immersion system showed that with a 6-benzyladenine acid (BA) concentration of 1.5 mg/L for 3 min of immersion, the greatest value for shoot number was 6.00 shoots/explant, and the height was 2.70 cm. Roots developed best at a treatment with a 5 min of immersion and NAA 1 mg/L concentration, root formation frequency, and root length reaching values of (71.25%; 1.61 cm). As a result, the temporary immersion system (TIS) system can be used for high-efficiency in vitro propagation of Ngoc Linh ginseng plants.

Keywords: Auxin, Cytokinin, Immersion time, Panax vietnamensis Ha et Grushv., Temporary immersion system (TIS)

Article Details

References

Akhtar, R., & Shahzad, A. (2019). Morphology and ontogeny of directly differentiating shoot buds and somatic embryos in Santalum album L. Journal of Forestry Research 30(4), 1179-189.

Alister, B. M., Finnie, J., Watt, M. P., & Blakeway, F. (2005). Use of temporary immersion system (RITA®) for production of commercial Eucalyptus clones in Mondi Forests (SA). Plant Cell, Tissue and Organ Culture 81(3), 347-358. https://doi.org/10.1007/s11240-004-6658-x.

Arya, S., Arya, I. D., & Eriksson, T. (1993). Rapid multiplication of adventitious somatic embryos of Panax ginseng. Plant Cell, Tissue and Organ Culture 34, 157-162. https://doi.org/10.1007/BF00036096.

Bernal, A., Machado, P., Cortegaza, L., Carmona, E. R., Rivero, O., Zayas, C. M., Nodarse, O., Perez, A., Santana, I., & Arencibia, A. D. (2008). Priming and biopriming integrated into the sugarcane micropropagation technology by temporary immersion bioreactors (TIBS). Sugar Tech 10(1), 42-47. http://dx.doi.org/10.1007/s12355-008-0007-z.

Bui, V. T. (2000). Development general of plant physiology. Ho Chi Minh City, Vietnam: Vietnam National University Ho Chi Minh City Press.

Cung, P. H. P., Nguyen, H. V., Nguyen, T. Q., Nguyen, B. Q., & Duong, X. H. (2007). The initial application of a temporary immersion system in propagating orchids (Phalaenopsis hybrid). In Duong, N. T. (Ed.), Proceedings of The Conference on Plant Biotechnology Science in Flower Breeding and Selection (7-16). Ho Chi Minh City, Vietnam: Agricultural Publishing House.

Duong, N. T., Hoang, C. X., Nguyen, T. B., Nguyen, N. B., Tran, T. X., Vu, L. Q., Nguyen, B. V., Vu, H. T., Trinh, H. T., Nguyen. N. C. T., Le, T. N. M., Ly, N. T. M., Thai, H. T., & Nguyen, H. T. (2010). Micropropagation of panax vietnamensis ha et grushv. Vietnam Journal of Biotechnology 8(3B), 1211-1219.

Duong, N. T., Nguyen, H. T., Nguyen, H. P., Ha, C. X., & Nguyen, N. B. (2013). New achievement in Panax vietnamensis research. In Jain, S. M., & Gupta, S. D. (Eds.). Biotechnology of neglected and underutilized crops (43-57). Dordrecht, Netherlands: Springer.

Escalona, M., Lorenzo, J. C., Gonzales, B., Daquinta, M., Gonzalez, J. L., Desjardins, Y., & Borroto, C. G. (1999). Pineapple (Ananas comosus L. Merr) micropropagation in temporary immersion systems. Plant Cell Reports 18(9), 743-748. http://dx.doi.org/10.1007/s002990050653.

Giridhar, P., Vino, D., Indu, E. P., Ravishankar, G. A., & Arun, C. (2004). Thidiazuron induced somatic embryogenesis in Coffea arabica L. And Coffea Canephora P. ex Fr. Acta Botanica Croatica 63(1), 25-33.

Guo, Z., Liu, X. M., Zhang, Q. X., Shen, Z., Tian, F. W., Zhang, H., Sun, Z. H., Zhang, P. H., & Chen, W. (2011). Influence of consumption of probiotics on the plasma lipid profile: A meta-analysis of randomized controlled trials. Nutrition Metabolism and Cardiovascular Diseases 21(11), 844-850. http://dx.doi.org/10.1016/j.numecd.2011.04.008.

Ha, L. T., & Duong, X. H. (2017). Effect of cultural conditions on propagating hairy root biomass of Ngoc Linh ginseng in the Plantima system. Journal of Vietnam Agricultural Science and Technology 6(79), 45-49.

Ha, T. D., & Grushvisky, I. V. (1985). A new species of the genus Panax (Araliaceae) from Vietnam: Panax vietnamensis Ha et Grushv. Botanicheskii Zhurnal 70, 518-522.

Hemmati, N., Cheniany, M., & Ganjeali, A. (2020). Effect of plant growth regulators and explants on callus induction and study of antioxidant potentials and phenolic metabolites in Salvia tebesana. Botanica Serbica 44(2), 163-173. http://dx.doi.org/10.2298/BOTSERB2002163H.

Indah, P. N., & Ermavitalini, D. (2013). Effect of the combination of 6-benzylaminopurine (BAP) and 2,4-dichlorophenoxyacetic acid concentrations (2,4-D) on calus induction from leaf of Calophyllum inophyllum Linn. Jurnal Sains Dan Seni Pomits 2(2), 2337-3520.

Jekayinoluwa, T., Gueye, B., Bhattacharjee, R., Osibanjo, O., Shah, T., & Abberton, M. (2019). Agromorphologic, genetic and methylation profiling of Dioscorea and Musa species multiplied under three micropropagation systems. PLoS ONE 14(5), 0216717. https://doi.org/10.1371/journal.pone.0216717.

Kadota, M., & Niimi, Y. (2003). Effects of cytokinin types and their concentrations on shoot proliferation and hyperhydricity in in vitro pear cultivar shoots. Plant Cell Tissue and Organ Culture 72(3), 261-265. http://dx.doi.org/10.1023/A:1022378511659.

Khan, M. N. M. (2019). In vitro callus induction of aromatic rice depends on the concentration of 2,4- D. Malaysian Journal of Halal Research 2, 9-13. http://dx.doi.org/10.2478/mjhr-2019-0007.

Maciel, A. L. R., Rodrigues, F. A., Pasqual, M., & Cavalho, C. H. S. (2016). Acclimatization of coffee (Coffea racemosa x Coffea arabica) somaclones obtained from temporary immersion bioreactor system (RITA®). Australian Journal of Crop Science 10(2), 169-175.

Marco, A. R. M., & Lourdes, G. I. A. (2016). Evaluation of different temporary immersion systems (BIT®, BIG, and RITA®) in the micropropagation of Vanilla planifolia Jacks. In Vitro Cellular and Developmental Biology - Plant 52, 154-160. https://doi.org/10.1007/s11627-015-9735-4.

Martre, P., Lacan, D., Just, D., & Teisson, C. (2001). Physiological effects of temporary immersion on Hevea brasiliensis (Müll. Arg.) callus. Plant Cell, Tissue and Organ Culture 67(1), 25-35. https://doi.org/10.1023/A:1011666531233.

Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum, 15(3), 473-497. https://doi.org/10.1111/j.1399-3054.1962.tb08052.x.

Nguyen, K. N., & Nguyen, D. V. (2011). Auxin. In Nguyen, K. N. (Ed.). Plant growth regulators textbook (76-154). Ho Chi Minh City, Vietnam: Vietnam Education Publishing House.

Nguyen, Q. P., Vu, T. D., Nguyen, L. M., & Dinh, T. X. (2020). Application of a temporary immersion system for micropropagation of Vietnamese Ginseng. Vietnam Journal of Agriculture and Rural Development 2, 22- 30.

Pérez, M., Bueno, M. A., Escalona, M., Toorop, P., Rodríguez, R., & Cañal, M. J. (2013). Temporary immersion systems (RITA®) for the improvement of cork oak somatic embryogenic culture proliferation and somatic embryo production. Trees 27, 1277-1284. https://doi.org/10.1007/s00468-013-0876-y.

Pierik, R. L. M. (1988). In vitro culture of higher plants as a tool in the propagation of horticultural crops. Acta Horticulturae 226, 25-40. https://doi.org/10.17660/ActaHortic.1988.226.1.

Silva, A., Pasqual, M., Teixeira, J. B., & de-Araújo, A. G. (2007). Micropropagation methods of pineapple. Pesquisa Agropecuária Brasileira 42(9),1257-1260.

Unal, T. B. (2018). Thidiazuron as an elicitor in the production of secondary metabolite. In Naseem, A. (Ed.). Thidiazuron: From urea derivative to plant growth regulator (463-469). Gateway East, Singapore: Springer.

Valeria, G., & Francesco, S. (2024). Temporary immersion system as an innovative approach for in vitro propagation of Sorbus domestica L. Horticulturae 10(2), 164. https://doi.org/10.3390/horticulturae10020164.

Viclhez, J., & Albany, N. (2014). Multiplicacion in vitro de Psidium guajava L. en sistemas de immersion temporal. Revista Colombiana de Biotecnología 16(2), 96-103.

Vu, H. T., Nguyen, H. P., Bui, V. T. V., Hoang, C. X., Hoang, T. T., Nguyen, N. B., Vu, L. Q., & Duong, N. T., (2015). Somatic embryogenesis from leaf transverse thin cell layer derived-callus of Vietnamese ginseng (Panax vietnamensis Ha et GRUSHV.). Vietnam Journal of Biotechnology 14(1), 63-73. https://doi.org/10.15625/1811-4989/14/1/9294.

Vu, V. V., Vu, T. T., & Hoang, T. M. (2009). Plant cell physiology. In Vu, V. V., Vu, T. T., & Hoang, T. M. (Eds.). Plant physiology (32-52). Ha Noi, Vietnam: Vietnam Education Publishing House.

Watt, P. M. (2012). The status of temporary immersion system (TIS) technology for plant micropropagation. African Journal of Biotechnology 11(76), 14025-14035. http://dx.doi.org/10.5897/AJB12.1693.

Yunita, R., Bagus, F. R. M., Nova, B., Rosadi, F. N., & Jamsari, J. (2021). Optimization of growth regulators to induce callus in chili (Capsicum annuum) cv. Berangkai. IOP Conference Series: Earth and Environmental Science 741(1), 012047. http://dx.doi.org/10.1088/1755-1315/741/1/012047.

Zhong, S. L., & Zhong, S. G. (1992). Morphological and ultrastructural characteristics of the embryogenic callus of American ginseng. Chinese Journal of Botany 4, 92-98.