Prevalence and antibiotic resistance of Escherichia coli isolated from the respiratory tract of goats in Can Tho city, Vietnam
Main Article Content
Abstract
A total of 319 nasal swab samples were collected to clarify the prevalence and antimicrobial susceptibility of E. coli in the respiratory tract of goats in Can Tho, Vietnam. It indicated that E. coli was detected at a relatively minor rate (8.46%), and their prevalence in male goats and dairy goats was higher than that in others. However, the ages and health conditions of goats did not affect the presence of E. coli in those goats. Those E. coli strains were still susceptible to seven examined antibiotics, but the resistance was recorded in ampicillin (25.93%) and bactrim (25.93%) in this study. Those E. coli strains (33.33%) could resist one to seven antibiotics with several patterns; the pattern of ampicillin + amoxicillin/clavulanic acid (7.41%) was more common than others. Moreover, E. coli strains harbored antibiotic-resistance genes, and blaampC was detected at the highest rate (92.11%), followed by sulII (43.86%), tetA (24.56%), and qnrA (5.26%). Of those E. coli strains, 22.81% harbored two to four examined genes with several patterns of antibiotic-resistance genes; the most detected pattern was blaampC + sulII + tetA (7.89%). Thus, controlling the prevalence of antibiotic-resistant E. coli in the respiratory tract of goats will protect animal and public health.
Article Details
References
Aarestrup, F. M., Seyfarth, A. M., Emborg, H. D., Pedersen, K., Hendriksen, R. S., & Bager, F. (2001). Effect of abolishment of the use of antimicrobial agents for growth promotion on occurrence of antimicrobial resistance in fecal enterococci from food animals in Denmark. Antimicrobial Agents and Chemotherapy 45(7), 2054-2059. https://doi.org/10.1128/aac.45.7.2054-2059.2001.
Abbassi, M. S., Kilani, H., Zouari, M., Mansouri, R., Oussama, E. F., Hammami, S., & Chehida, N. B. (2017). Antimicrobial resistance in Escherichia coli isolates from healthy poultry, bovine and ovine in Tunisia: a real animal and human health threat. Journal of Clinical Microbiology and Biochemical Technology 3, 19-23. http://dx.doi.org/10.17352/jcmbt.000021.
Ahmed, O. B., & Dablool, S. A. (2017). Quality Improvement of the DNA extracted by boiling method in Gram negative bacteria. International Journal of Bioassays 6(4), 5347-5349. http://dx.doi.org/10.21746/ijbio.2017.04.004.
Algammal, A. M., El-Sayed, M. E., Youssef, F. M., Saad, S. A., Elhaig, M. M., Batiha, G. E., Hozzein, W. N., & Ghobashy, M. O. I. (2020). Prevalence, the antibiogram and the frequency of virulence genes of the most predominant bacterial pathogens incriminated in calf pneumonia. AMB Express 10(1), 99. https://doi.org/10.1186/s13568-020-01037-z.
Banerjee, J., Bhattacharyya, D., Habib, M., Chaudhary, S., Biswas, S., Maji, C., Nanda, P. K., Das, A. K., Dandapat, P., Samanta, I., Lorenzo, J. M., Dutt, T., & Bandyopadhyay, S. (2022). Antimicrobial resistance pattern, clustering mechanisms and correlation matrix of drug-resistant Escherichia coli in black Bengal goats in West Bengal, India. Antibiotics (Basel) 11(10), 1344. https://doi.org/10.3390/antibiotics11101344.
Barrow, G. I., & Faltham, R. K. A. (1993). Cowan and Steel’s manual for the identification of medical bacteria (3rd ed.). Cambridge, UK: Cambridge University Press.
Bauer, A. W., Kirby, W. M., Sherris, J. C., & Turck, M. (1966). Antibiotic susceptibility testing by a standardized single disk method. American Journal of Clinical Pathology 45(4), 493-496. https://doi.org/10.1093/ajcp/45.4_ts.493.
Belanger, L., Garenaux, A., Harel, J., Boulianne, M., Nadeau, E., & Dozois, C. M. (2011). Escherichia coli from animal reservoirs as a potential source of human extraintestinal pathogenic E coli. FEMS Immunology and Medical Microbiology 62(1), 1-10. https://doi.org/10.1111/j.1574-695x.2011.00797.x.
Besser, T. E., Frances, C. E., Highland, M. A., Wolff, P., Justice-Allen, A., Mansfield, K., Davis, M. A., & Foreyt, W. (2012). Bighorn sheep pneumonia: Sorting out the cause of a polymicrobial disease. Preventive Veterinary Medicine 108(2-3), 85-93. https://doi.org/10.1016/j.prevetmed.2012.11.018.
Cattoir, V., & Nordmann, P. (2009). Plasmidmediated quinolone resistance in gram-negative bacterial species: an update. Current Medicinal Chemistry 16(8), 1028-1046. https://doi.org/10.2174/092986709787581879.
CLSI (Clinical and Laboratory Standards Institute). (2022). Performance standards for antimicrobial susceptibility testing (32nd ed.). Pennsylvania, USA: Clinical and Laboratory Standards Institute.
DebRoy, C., Roberts, E., Jayarao, B. M., & Brooks, J. W. (2008). Bronchopneumonia associated with extraintestinal pathogenic Escherichia coli in a horse. Journal of Veterinary Diagnostic Investigation 20(5), 661-664. https://doi.org/10.1177/104063870802000524.
De Oliveira, B. A. F. D., Gaeta, N. C., Ribeiro, B. L. M., Alemán, M. A. R, Marques, L. M., Timenetsky, J., Melville, P. A., Marques, J. A., Marvulle, V., & Gregory, L. (2016). Determination of bacterial aetiologic factor on tracheobronchial lavage in relation to clinical signs of bovine respiratory disease. Journal of Medical Microbiology 65(10), 1137-1142. https://doi.org/10.1099/jmm.0.000345.
Fricke, W. F., Wright, M. S., Lindell, A. H., Harkins, D. M., Baker-Austin, C., Ravel, J., & Stepanauskas, R. (2008). Insights into the environmental resistance gene pool from the genome sequence of the multidrug-resistant environmental isolate Escherichia coli SMS-3-5. Journal of Bacteriology 190(20), 6779-6794. https://doi.org/10.1128/jb.00661-08.
Hannah, E. L., Johnson, J. R., Angulo, F., Haddadin, B., Williamson, J., & Matthew, M. H. (2009). Molecular analysis of antimicrobial-susceptible and-resistant Escherichia coli from retail meats and human stool and clinical specimens in a rural community setting. Foodborne Pathogens and Disease 6(3), 285-295. https://doi.org/10.1089/fpd.2008.0176.
Huddleston, J. R. (2014). Horizontal gene transfer in the human gastrointestinal tract: potential spread of antibiotic resistance genes. Infection and Drug Resistance 7, 167-176. https://doi.org/10.2147%2FIDR.S48820.
Khalifa, H. O., Oreiby, A., Abd El-Hafeez, A. A., Abd El Latif, A., Okanda, T., Kato, Y., & Matsumoto, T. (2021). High-lactam and quinolone resistance of enterobacteriaceae from the respiratory tract of sheep and goat with respiratory disease. Animals 11(8), 2258. https://doi.org/10.3390%2Fani11082258.
Lei, T., Tian, W., He, L., Huang, X. H., Sun, Y. X., Deng, Y. T., Sun, Y., DianHong, L. V., Wu, C. M., Huang, L. Z., Shen, J. Z., & Liu J. H. (2010). Antimicrobial resistance in Escherichia coli isolates from food animals, animal food products and companion animals in China. Veterinary Microbiology 146(1-2), 85-89. https://doi.org/10.1016/j.vetmic.2010.04.025.
Logue, C. M., Wannemuehler, Y., Nicholson, B. A., Doetkott, C., Barbieri, N. L., & Nolan, L. L. (2017). Comparative analysis of phylogenetic assignment of human and avian ExPEC and fecal commensal Escherichia coli using the (previous and revised) clermont phylogenetic typing methods and its impact on avian pathogenic Escherichia coli (APEC) classification. Frontiers in Microbiology 8, 283. https://doi.org/10.3389/fmicb.2017.00283.
Ma, J. L., Cheng, Z. X., Bai, Q. K., Zhao, K. J., Pan, Z. H., & Yao, H. C. (2021). Screening virulence factors of porcine extraintestinal pathogenic Escherichia coli (an emerging pathotype) required for optimal growth in swine blood. Transboundary and Emerging Diseases 68(4), 2005-2016. https://doi.org/10.1111/tbed.13848.
Martínez-Vázquez, A. V., Vázquez-Villanueva, J., Leyva-Zapata, L. M., Barrios-García, H., Rivera, G., & Bocanegra-García, V. (2021). Multidrug resistance of Escherichia coli strains isolated from bovine feces and carcasses in Northeast Mexico. Frontiers in Veterinary Science 8, 643802. https://doi.org/10.3389/fvets.2021.643802.
Mellata, M. (2013). Human and avian extraintestinal pathogenic Escherichia coli: infections, zoonotic risks, and antibiotic resistance trends. Foodborne Pathogens and Disease 10(11), 916-932. https://doi.org/10.1089/fpd.2013.1533.
Obaidat, M. M., & Gharaibeh, W. A. (2022). Sheep and goat milk in Jordan is a reservoir of multidrug resistant extended spectrum and AmpC betalactamases Escherichia coli. International Journal of Food Microbiology 377, 109834. https://doi.org/10.1016/j.ijfoodmicro.2022.109834.
Pehrsson, E. C., Tsukayama, P., Patel, S., Navarrete, K. M., Calderon, M., Cabrera, L., Bertoli, M. T., Berg, D. E., Gilman, R. H., & Dantas, G. (2016). Interconnected microbiomes and resistomes in low-income human habitats. Nature 533(7602), 212-216. https://doi.org/10.1038/nature17672.
Pelczar, M. J., Chan, E. C., & Krieg, N. R. (1986). The cultivation of bacteria. In Pelczar, M. J., Chan, E. C., & Krieg, N. R. (Eds.). Microbiology (5th ed., 99-114). New Dehli, India: Tata Mc-Graw Hill.
Puvarajan, B., Lurthureetha, T., & Sivakumar, T. (2020). Isolation, characterisation and prevalence pattern of bacterial flora on pneumonic cases of goats slaughtered at Thanjavur abattoir, Cauvery Delta Zone, Tamilnadu. Journal of Entomology and Zoology Studies 8(6), 738-742. https://doi.org/10.22271/j.ento.2020.v8.i6j.7932.