Bacterial species causing subclinical mastitis in dairy cows: rapid identification and antimicrobial susceptibility testing
Main Article Content
Abstract
This study aimed to determine subclinical mastitis (SCM) caused by bacterial species, using chromogenic culture media and to assess the antimicrobial resistance rate in the isolated bacteria. From March to December 2023, 143 milk samples were collected from 71 Holstein Friesian cows with SCM across seven dairy farms in Ho Chi Minh City and Binh Duong province. Milk samples were incubated in triplicate chromogenic culture media to identify SCM caused by microorganisms. Our study revealed that 39.2% (56/143) of the samples had the growth of a single morphology, 26.6% (38/143) exhibited growth of two distinct morphologies, 9.0% (13/143) were found to be contaminated, and 25.2% (36/143) showed no growth. The isolated Streptococcus species were Strep. agalactiae 34.3% (49/143), Strep. uberis 22.4% (32/143), and Enterococcus spp. 1.4% (2/143). Besides, S. epidermidis 20.3% (29/143), S. saprophyticus 14.7% (21/143), and S. aureus 4.2% (6/143) were frequently isolated among Staphylococcus species. For gram-negative bacteria causing SCM, E. coli 2.8% (4/143), Klebsiella spp. 1.4% (2/143), and Pseudomonas spp. 4.2% (6/143) were the most isolated. Regarding antimicrobial susceptibility testing, the resistance rate of each bacterial species to each antibiotic tested differed for Staphylococcus, Streptococcus, and gram-negative bacteria. Staphylococcus aureus was not resistant to gentamycin, florfenicol, and marbofloxacin. The resistance rate of S. epidermidis to gentamycin, florfenicol, trimethoprim sulfadiazine, and amoxicillin-clavulanic acid varied from 10.3% to 17.2%. Marbofloxacin and trimethoprim-sulfadiazine were excellent choices in treating SCM caused by S. saprophyticus because of their low resistance rate (10.3 - 13.3%). Streptococcus uberis was sensitive to the combined antibiotic amoxicillin-clavulanic acid. The resistance rate of Strep. agalactiae to this combined antibiotic (amoxicillin-clavuclanic acid) was the lowest (10%). Pseudomonas spp. was resistant to the tested antibiotics. Our study suggests that identifying bacterial species and conducting antimicrobial susceptibility tests play a crucial role in improving the treatment effectiveness for bovine SCM.
Article Details
References
Adkins, P. R. F., & Middleton, J. R. (2018). Methods for diagnosing mastitis. Veterinary Clinical North America Food Animal Practice 34(3), 479-491. https://doi.org/10.1016/j.cvfa.2018.07.003.
Ashraf, A., & Imran, M. (2018). Diagnosis of bovine mastitis: from laboratory to farm. Tropical Animal Health Production 50, 1193-1202. https://doi.org/10.1007/s11250-018-1629-0.
Bar, D., Tauer, L. W., Bennett, G., González, R. N., Hertl, J. A., Schukken, Y. H., Schulte, H. F., Welcome, F. L., & Gröhn, Y. T. (2008). The cost of generic clinical mastitis in dairy cows as estimated by using dynamic programming. Journal of Dairy Science 91(6), 2205-2214. https://doi.org/10.3168/jds.2007-0573.
Botrel, M. A., Haenni, M., Morignat, E., Sulpice, P., Madec, J. Y., & Calavas, D. (2010). Distribution and antimicrobial resistance of clinical and subclinical mastitis pathogens in dairy cows in Rhône-Alpes, France. Foodborne Pathology Disease 7(5), 479-487. https://doi.org/10.1089/fpd.2009.0425.
Cameron, M., Keefe, G. P., Roy, J. P., Dohoo, I. R., MacDonald, K. A., & McKenna, S. L. (2013). Evaluation of a 3M petrifilm on-farm culture system for the detection of intramammary infection at the end of lactation. Preventive Veterinary Medicine 111(1-2), 1-9. https://doi.org/10.1016/j.prevetmed.2013.03.006.
CLSI (Clinical and Laboratory Standard Institue). (2018). Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals (4th ed.). Pennsylvania, USA: Clinical and Laboratory Standard Institue.
Côté-Gravel, J., & Malouin, F. (2019). Symposium review: Features of Staphylococcus aureus mastitis pathogenesis that guide vaccine development strategies. Journal of Dairy Science 102(5), 4727-4740. https://doi.org/10.3168/jds.2018-15272.
Ebrahimi, A., Kheirabadi, K. H. P., & Nikookhah, F. (2007). Antimicrobial susceptibility of environmental bovine mastitis pathogens in west central Iran. Pakistan Journal Biology Sciences 10(17), 3014-3016. https://doi.org/10.3923/pjbs.2007.3014.3016.
Erskine, R. J., Walker, R. D., Bolin, C. A., Bartlett, P. C., & White, D. G. (2002). Trends in antibacterial susceptibility of mastitis pathogens during a seven-year period. Journal of Dairy Science 85(5), 1111-1118. https://doi.org/10.3168/jds.S0022-0302(02)74172-6.
Fox, L. K. (2012). Mycoplasma mastitis: causes, transmission, and control. Veterinary Clinics of North America: Food Animal Practice 28(2), 225-237. https://doi.org/10.1016/j.cvfa.2012.03.007.
Ganda, E. K., Bisinotto, R. S., Decter, D. H., & Bicalho, R. C. (2016). Evaluation of an on-farm culture system (accumast) for fast identification of milk pathogens associated with clinical mastitis in dairy cows. PloS One 11(5), e0155314. https://doi.org/10.1371/journal.pone.0155314.
Granja, B. M., Fidelis, C. E., Garcia, B. L. N., & dos Santos, M. V. (2021). Evaluation of chromogenic culture media for rapid identification of microorganisms isolated from cows with clinical and subclinical mastitis. Journal of Dairy Science 104(8), 9115-9129. https://doi.org/10.3168/jds.2020-19513.
Hagnestam-Nielsen, C., & Ostergaard, S. (2009). Economic impact of clinical mastitis in a dairy herd assessed by stochastic simulation using different methods to model yield losses. Animal 3(2), 315-328. https://doi.org/10.1017/S1751731108003352.
Kalmus, P., Aasmäe, B., Kärssin, A., Orro, T., & Kask, K. (2011). Udder pathogens and their resistance to antimicrobial agents in dairy cows in Estonia. Acta Veterinaria Scandinavica 53(1), 1-7. https://doi.org/10.1186/1751-0147-53-4.
Kandeel, S. A., Megahed, A. A., Arnaout, F. K., & Constable, P. D. (2018). Evaluation and comparison of 2 on-farm tests for estimating somatic cell count in quarter milk samples from lactating dairy cattle. Journal of Veterinary Internal Medicine 32(1), 506-515. https://doi.org/10.1111/jvim.14888.
Ly, S. H., Nguyen, N. Q., & Nguyen, D. T. (2022). Characterization of clinical mastitis in dairy cows in industrial farms. Journal of Veterinary Science and Technology 29(6), 70-74.
McCarron, J. L., Keefe, G. P., McKenna, S. L. B., Dohoo, I. R., & Poole, D. E. (2009). Laboratory evaluation of 3M Petrifilms and university of Minnesota Bi-plates as potential on-farm tests for clinical mastitis. Journal of Dairy Science 92(5), 2297-2305. https://doi.org/10.3168/jds.2008-1661.
Nam, H. M., Lim, S. K., Kang, H. M., Kim, J. M., Moon, J. S., Jang, K. C., Joo, Y. S., Kang, M. I., & Jung, S. C. (2009). Antimicrobial resistance of streptococci isolated from mastitic bovine milk samples in Korea. Journal of Veterinary Diagnosis Investigation 21(5), 698-701. https://doi.org/10.1177/104063870902100517.
NMC (National Mastitis Council). (2017). Laboratory handbook on bovine mastitis (3rd ed.). Minnesota, USA: National Mastitis Council.
Oliver, S. P., & Murinda, S. E. (2012). Antimicrobial resistance of mastitis pathogens. Veterinary Clinics of North America: Food Animal Practice 28(2), 165-185. https://doi.org/10.1016/j.cvfa.2012.03.005.
Östensson, K., Lam, V., Sjögren, N., & Wredle, E. (2013). Prevalence of subclinical mastitis and isolated udder pathogens in dairy cows in Southern Vietnam. Tropical Animal Health Production 45, 979-986. https://doi.org/10.1007/s11250-012-0320-0.
Perry, J. D. (2017). A decade of development of chromogenic culture media for clinical microbiology in an era of molecular diagnostics. Clinical Microbiology Reviews 30(2), 449-479. https://doi.org/10.1128/CMR.00097-16.
Persson, Y., Nyman, A. K. J., & Grönlund-Andersson, U. (2011). Etiology and antimicrobial susceptibility of udder pathogens from cases of subclinical mastitis in dairy cows in Sweden. Acta Veterinaria Scandivanica 53(1), 1-8. https://doi.org/10.1186/1751-0147-53-36.
Petrovski, K. R., Grinberg, A., Williamson, N. B., Abdalla, M. E., Lopez-Villalobos, N., Parkinson, T. J., Tucker, I. G., & Rapnicki, P. (2015). Susceptibility to antimicrobials of mastitiscausing Staphylococcus aureus, Streptococcus uberis and Str. dysgalactiae from New Zealand and the USA as assessed by the disk diffusion test. Australian Veterinary Journal 93(7), 227-233. https://doi.org/10.1111/avj.12340.
Pinzón-Sánchez, C., Cabrera, V. E., & Ruegg, P. L. (2011). Decision tree analysis of treatment strategies for mild and moderate cases of clinical mastitis occurring in early lactation. Journal of Dairy Science 94(4), 1873-1892. https://doi.org/10.3168/jds.2010-3930.
Rajala-Schultz, P. J., Smith, K. L., Hogan, J. S., & Love, B. C. (2004). Antimicrobial susceptibility of
mastitis pathogens from first lactation and older cows. Veterinary Microbiology 102(1-2), 33-42. https://doi.org/10.1016/j.vetmic.2004.04.010.
Roesch, M., Perreten, V., Doherr, M. G., Schaeren, W., Schällibaum, M., & Blum, J. W. (2006). Comparison of antibiotic resistance of udder pathogens in dairy cows kept on organic and on conventional farms. Journal of Dairy Science 89(3), 989-997. https://doi.org/10.3168/jds.S0022-0302(06)72164-6.
Ruegg, P. L. (2011). Managing mastitis and producing quality milk. Dairy Production Medicine 207-232. https://doi.org/10.1002/9780470960554.ch18.
Suojala, L., Kaartinen, L., & Pyörälä, S. (2013). Treatment for bovineEscherichia colimastitis - an evidence-based approach. Journal of Veterinary Pharmacology and Therapeutics 36(6), 521-531. https://doi.org/10.1111/jvp.12057.
Suriyasathaporn, W. (2010). Milk quality and antimicrobial resistance against mastitis pathogens after changing from a conventional to an experimentally organic dairy farm. Asian Australasian Journal of Animal Sciences 23(5), 659-664.