Comparison of the physicochemical properties and biological compounds of acerola fruit varieties grown in Vietnam through the various maturation stages
Main Article Content
Abstract
The objective of the present study was to find the changes in physicochemical properties, bioactive compounds, and antioxidant activity of acerola fruits under different cultivars (i.e., Brazilian acerola (Malpighia emarginata D.C) and sour acerola (Malpighia glabra L.)) and maturation stages (unripe, half-ripe, and ripe). For any species, the study found an increase in total soluble solid and a* value, whereas there was a decrease in the content of bioactive compounds (i.e., polyphenols, flavonoids, vitamin C), total acidity, and antioxidant activity, which followed the maturation development of fruits. Briefly, the unripe acerola fruits (Brazillan cultivar) were an excellent source of vitamin C (32.97 mg/g) and phenolic content (25.62 mg GAE/g).
Article Details
References
Al-Maiman, S. A., & Ahmad, D. (2002). Changes in physical and chemical properties during pomegranate (Punica granatum L.) fruit maturation. Food Chemistry 76(4), 437-441. https://doi.org/10.1016/S0308-8146(01)00301-6.
Almeida, M. M. B., de Sousa, P. H. M., Arriaga, Â. M. C., do Prado, G. M., de Carvalho Magalhães, C. E., Maia, G. A., & de Lemos, T. L. G. (2011). Bioactive compounds and antioxidant activity of fresh exotic fruits from northeastern Brazil. Food Research International 44(7), 2155-2159. https://doi.org/ 10.1016/j.foodres.2011.03.051.
Barbosa-Gamez, I., Caballero-Montoya, K. P., Ledesma, N., Sayago-Ayerdi, S. G., García Magaña, M. D. L., Bishop von Wettberg, E. J., & Montalvo‐González, E. (2017). Changes in the nutritional quality of five Mangifera species harvested at two maturity stages. Journal of The Science of Food and Agriculture 97(14), 4987-4994. https://doi.org/10.1002/jsfa.8377.
Batista-Silva, W., Nascimento, V. L., Medeiros, D. B., Nunes-Nesi, A., Ribeiro, D. M., Zsögön, A., & Araújo, W. L. (2018). Modifications in organic acid profiles during fruit development and ripening: correlation or causation? Frontiers in Plant Science 9, 1-20. https://doi.org/10.3389/fpls.2018.01689.
Blank, D. E., Justen, D., Fraga, S., Peixoto, C. R., & de Moura, N. F. (2018). Chemical composition and antioxidant activity of Bunchosia glandulifera fruit at different ripening stages. Food and Nutrition Sciences 9(10), 1147-1159. https://doi.org/ 10.4236/fns.2018.910083.
de Assis, S. A., Lima, D. C., & de Faria Oliveira, O. M. (2001). Activity of pectinmethylesterase, pectin content and vitamin C in acerola fruit at various stages of fruit development. Food Chemistry 74(2), 133-137. https://doi.org/ 10.1016/S0308-8146(01)00104-2.
Do, Q. D., Angkawijaya, A. E., Tran-Nguyen, P. L., Huynh, L. H., Soetaredjo, F. E., Ismadji, S., & Ju, Y. H. (2014). Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. Journal of Food and Drug Analysis 22(3), 296-302. https://doi.org/10.1016/j.jfda.2013.11.001.
Hanamura, T., Hagiwara, T., & Kawagishi, H. (2005). Structural and functional characterization of polyphenols isolated from acerola (Malpighia emarginata DC.) fruit. Bioscience, Biotechnology, and Biochemistry 69(2), 280-286. https://doi.org/10.1271/bbb.69.280.
Hoang, Q. B., Pham, N. T., Le, T. T., & Duong, T. N. D. (2022). Bioactive compounds and strategy processing for acerola: A review. Can Tho University Journal of Innovation and Sustainable Development 14(2), 46-60. https://doi.org/10.22144/ctu.jen.2022.011.
Kim, D. W., Lee, W. J., Asmelash Gebru, Y., Choi, H. S., Yeo, S. H., Jeong, Y. J., Kim, S., Kim, Y. H., & Kim, M. K. (2019). Comparison of bioactive compounds and antioxidant activities of Maclura tricuspidata fruit extracts at different maturity stages. Molecules 24(3), 567. https://doi.org/10.3390/molecules24030567.
Kulkarni, A. P., & Aradhya, S. M. (2005). Chemical changes and antioxidant activity in pomegranate arils during fruit development. Food Chemistry 93(2), 319-324. https://doi.org/10.1016/j.foodchem.2004.09.029.
Lim, Y. Y., Lim, T. T., & Tee, J. J. (2007). Antioxidant properties of several tropical fruits: A comparative study. Food Chemistry 103(3), 1003-1008. https://doi.org/10.1016/j.foodchem.2006.08.038.
Lima, V. L., Mélo, E. A., Maciel, M. I. S., Prazeres, F. G., Musser, R. S., & Lima, D. E. (2005). Total phenolic and carotenoid contents in acerola genotypes harvested at three ripening stages. Food Chemistry 90(4), 565-568. https://doi.org/10.1016/j.foodchem.2004.04.014.
Mahmood, T., Anwar, F., Abbas, M., & Saari, N. (2012). Effect of maturity on phenolics (phenolic acids and flavonoids) profile of strawberry cultivars and mulberry species from Pakistan. International Journal of Molecular Sciences 13(4), 4591-4607. https://doi.org/10.3390/ijms13044591.
Mezadri, T., Pérez-Gálvez, A., & Hornero-Méndez, D. (2005). Carotenoid pigments in acerola fruits (Malpighia emarginata DC.) and derived products. European Food Research and Technology 220, 63-69. https://doi.org/ 10.1007/s00217-004-1042-y.
Mezadri, T., Villaño, D., Fernández-Pachón, M. S., García-Parrilla, M. C., & Troncoso, A. M. (2008). Antioxidant compounds and antioxidant activity in acerola (Malpighia emarginata DC.) fruits and derivatives. Journal of Food Composition and Analysis 21(4), 282-290. https://doi.org/10.1016/j.jfca.2008.02.002.
Mieszczakowska-Frąc, M., Celejewska, K., & Płocharski, W. (2021). Impact of innovative technologies on the content of vitamin C and its bioavailability from processed fruit and vegetable products. Antioxidants 10(1), 54. https://doi.org/ 10.3390/antiox10010054.
Mini, M. (2017). Influence of harvesting stage and storage temperature on nutritional quality of tomato (Lycopersicon esculentum Mill) cv. PKM-1. International Journal of Biochemistry Research and Review 16(4), 1-8. https://doi.org/10.9734/IJBCRR/2017/31858.
Nassur, R. D. C. M. R., González‐Moscoso, S., Crisosto, G. M., Lima, L. C. D. O., Vilas Boas, E. V. D. B., & Crisosto, C. H. (2015). Describing quality and sensory attributes of 3 mango (Mangifera indica L.) cultivars at 3 ripeness stages based on firmness. Journal of Food Science 80(9), 2055-2063. https://doi.org/10.1111/1750-3841.12989.
Pathy, K. (2018). Process for preparation of vitamin C and method for determination of vitamin C in tablets. Surgery and Case Studies: Open Access Journal 1(3), 1-14. https://doi.org/10.32474/SCSOAJ.2018.01.000114.
Phuong, N. N. M., Le, T. T., Dang, M. Q., Van Camp, J., & Raes, K. (2020). Selection of extraction conditions of phenolic compounds from rambutan (Nephelium lappaceum L.) peel. Food and Bioproducts Processing 122, 222-229. https://doi.org/10.1016/j.fbp.2020.05.008.
Ribeiro, B. S., & de Freitas, S. T. (2020). Maturity stage at harvest and storage temperature to maintain postharvest quality of acerola fruit. Scientia Horticulturae 260, 108901. https://doi.org/10.1016/j.scienta.2019.108901.
Righetto, A. M., Netto, F. M., & Carraro, F. (2005). Chemical composition and antioxidant activity of juices from mature and immature acerola (Malpighia emarginata DC). Food Science and Technology International 11(4), 315-321. https://doi.org/10.1177/1082013205056785.
Ruiz-Torralba, A., Guerra-Hernández, E. J., & GarcíaVillanova, B. (2018). Antioxidant capacity, polyphenol content and contribution to dietary intake of 52 fruits sold in Spain. CyTA-Journal of Food 16(1), 1131-1138. https://doi.org/10.1080/19476337.2018.1517828.
Shin, G. R., Lee, S., Lee, S., Do, S. G., Shin, E., & Lee, C. H. (2015). Maturity stage-specific metabolite profiling of Cudrania tricuspidata and its correlation with antioxidant activity. Industrial Crops and Products 70, 322-331. https://doi.org/10.1016/j.indcrop.2015.01.048.
Vendramini, A. L., & Trugo, L. C. (2000). Chemical composition of acerola fruit (Malpighia punicifolia L.) at three stages of maturity. Food Chemistry 71(2), 195-198. https://doi.org/10.1016/S0308-8146(00)00152-7.
Xu, G., Liu, D., Chen, J., Ye, X., Ma, Y., & Shi, J. (2008). Juice components and antioxidant capacity of citrus varieties cultivated in China. Food Chemistry 106(2), 545-551. https://doi.org/10.1016/j.foodchem.2007.06.046.