Huong T. G. Thach , Hong T. Tran , Anh T. V. Nguyễn , & Khang V. Huynh *

* Correspondence: Huynh Vinh Khang (email: khanghv@hcmuaf.edu.vn)

Main Article Content

Abstract

Microalgae have currently been considered as a promising feedstock for biodiesel production. The accumulation of microalgal lipids is species-specific and largely dependent upon cultivation conditions. The present study aimed to investigate the biomass productivity and lipid content of Scenedesmus obliquus cultivated under nitrogen (N)- and phosphorus (P)-depleted conditions. The highest microalgal density was 38.0 ± 3.5 × 106 cell/mL after 12 days of cultivation in the standard Bold’s Basal Medium (BBM) and significantly decreased with decreasing N conentrations in the media, with the density of 1.4 ± 0.5 ×
10
6, 21.5 ± 1.4 × 106, 25.7 ± 4.9 × 106, and 33.5 ± 1.2 × 106 cell/mL in the nutrient solutions containing 0, 25, 50, and 75% N, respectively. Conversely, the P concentrations showed negligible effects on the growth of S. obliquus across all treatments. Overall, the lipid accumulation of S. obliquus increased with decreasing N and P concentrations. The results revealed that N-starvation yielded the highest microalgal lipid content of 184.1 ± 17.4 mg/g d.w., whereas that under N-sufficient condition was only 80.0 ± 9.8 mg/g d.w. Likewise, the lipid content was almost double when S. obliquus was grown in the modified BBM containing half of P concentration of the standard medium. Taken together, this study demonstrates that alteration of the nutrients is an effective approach for enhancing lipid accumulation in S. obliquus.

Keywords: Culture conditions , Lipids , Nitrogen , Phosphorus , Scenedesmus obliquus

Article Details

References

Abomohra, A. E. F., Jin, W., & Sheekh, M. E. (2016). Enhancement of lipid extraction for improved biodiesel recovery from the biodiesel promising microalga Scenedesmus obliquus. Energy Conversion and Management 108, 23-29. https://doi.org/10.1016/j.enconman.2015.11.007.

Anand, J., & Arumugam, M. (2015). Enhanced lipid accumulation and biomass yield of Scenedesmus quadricauda under nitrogen starved condition. Bioresource Technology 188, 190-194. https://doi.org/10.1016/j.biortech.2014.12.097.

Brindhadevi, K., Mathimani, T., Rene, E. R., Shanmugam, S., Nguyen, C. T. L., & Pugazhendhi, A. (2021). Impact of cultivation conditions on the biomass and lipid in microalgae with an emphasis on biodiesel. Fuel 284, 119058. https://doi.org/10.1016/j.fuel.2020.119058.

Chen, M., Tang, H., Ma, H., Holland, T. C., Ng, K. Y. S., & Salley, S. O. (2011). Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresource Technology 102(2), 1649-1655. https://doi.org/10.1016/j.biortech.2010.09.062.

Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances 25(3), 294-306. https://doi.org/10.1016/j.biotechadv.2007.02.001.

Ellison, C. R., Overa, S., & Boldor, D. (2019). Central composite design parameterization of microalgae/cyanobacteria co-culture pretreatment for enhanced lipid extraction using an external clamp-on ultrasonic transducer. Ultrasonics Sonochemistry 51, 496-503. https://doi.org/10.1016/j.ultsonch.2018.05.006.

Goldberg, I. K., & Cohen, Z. (2006). The effect of phosphate starvation on the lipid and fatty acid composition of the fresh water eustigmatophyte Monodus Subterraneus. Phytochemistry 67(7), 696-701. https://doi.org/10.1016/j.phytochem.2006.01.010.

Goncalves, E. C., Wilkie, A. C., Kirst, M., & Rathinasabapathi, B. (2016). Metabolic regulation of triacylglycerol accumulation in the green algae: identification of potential targets for engineering to improve oil yield. Plant Biotechnology Journal 14(8), 1649-1660. https://doi.org/10.1111/pbi.12523.

Gouveia, L., & Oliveira, A. C. (2009). Microalgae as a raw material for biofuels production. Journal of Industrial Microbiology and Biotechnology 36(2), 269-274. https://doi.org/10.1007/s10295-008-0495-6.

Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M., & Darzins, A. (2008). Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. The Plant Journal 54(4), 621-639. https://doi.org/10.1111/j.1365-313X.2008.03492.x.

Malekzadeh, M., Najafabadi, H. A., Hakim, M., Feilizadeh, M., Vossoughi, M., & Rashtchian, D. (2016). Experimental study and thermodynamic modeling for determining the effect of nonpolar solvent (hexane)/polar solvent (methanol) ratio and moisture content on the lipid extraction efficiency from Chlorella vulgaris. Bioresource Technology 201, 304-311. https://doi.org/10.1016/j.biortech.2015.11.066.

Mansour, E. A., Enin, S. A. A. E., Hamouda, A. S., & Mahmoud, H. M. (2019). Efficacy of extraction techniques and solvent polarity on lipid recovery from domestic wastewater microalgae. Environmental Nanotechnology, Monitoring & Management 12, 100271. https://doi.org/10.1016/j.enmm.2019.100271.

Mao, X., Wu, T., Sun, D., Zhang, Z., & Chen, F. (2018). Differential responses of the green microalga Chlorella zofingiensis to the starvation of various nutrients for oil and astaxanthin production. Bioresource Technology 249, 791-798. https://doi.org/10.1016/j.biortech.2017.10.090.

Nagappan, S., Devendran, S., Tsai, P. C., Jayaraman, H., Alagarsamy, V., Pugazhendhi, A., & Ponnusamy, V. K. (2020). Metabolomics integrated with transcriptomics and proteomics: Evaluation of systems reaction to nitrogen deficiency stress in microalgae. Process Biochemistry 91, 1-14. https://doi.org/10.1016/j.procbio.2019.11.027.

Praveenkumar, R., Shameera, K., Mahalakshmi, G., Akbarsha, M. A., & Thajuddin, N. (2012). Influence of nutrient deprivations on lipid accumulation in a dominant indigenous microalga Chlorella sp., BUM11008: Evaluation for biodiesel production. Biomass and Bioenergy 37, 60-66. https://doi.org/10.1016/j.biombioe.2011.12.035.

Putt, R., Singh, M., Chinnasamy, S., & Das, K. (2011). An efficient system for carbonation of high-rate algae pond water to enhance CO2 mass transfer. Bioresource Technology 102(3), 3240-3245. https://doi.org/10.1016/j.biortech.2010.11.029.

Ren, H. Y., Liu, B. F., Ma, C., Zhao, L., & Ren, N. Q. (2013). A new lipid-rich microalga Scenedesmus sp. strain R-16 isolated using Nile red staining: effects of carbon and nitrogen sources and initial pH on the biomass and lipid production. Biotechnology for Biofuels 6(1), 143. https://doi.org/10.1186/1754-6834-6-143.

Rivas, J. K. S., Altamirano, R. H., Cervantes, V. Y. M., Gómez, E. J. B., & Chairez, I. (2020). Biodiesel production, through intensification and profitable distribution of fatty acid methyl esters by a microalgae-yeast co-culture, isolated from wastewater as a function of the nutrients’ composition of the culture media. Fuel 280, 118633. https://doi.org/10.1016/j.fuel.2020.118633.

Shen, X. F., Chu, F. F., Lam, P. K. S., & Zeng, R. J. (2015). Biosynthesis of high yield fatty acids from Chlorella vulgaris NIES-227 under nitrogen starvation stress during heterotrophic cultivation. Water Research 81, 294-300. https://doi.org/10.1016/j.watres.2015.06.003.

Shin, H. Y., Shim, S. H., Ryu, Y. J., Yang, J. H., Lim, S. M., & Lee, C. G. (2018). Lipid extraction from Tetraselmis sp. microalgae for biodiesel production using hexane-based solvent mixtures. Biotechnology and Bioprocess Engineering 23, 16-22. https://doi.org/10.1007/s12257-017-0392-9.

Song, X., Liu, B. F., Kong, F., Ren, N. Q., & Ren, H. Y. (2022). Overview on stress-induced strategies for enhanced microalgae lipid production: Application, mechanisms and challenges. Resources, Conservation and Recycling 183, 106355. https://doi.org/10.1016/j.resconrec.2022.106355.

Song, X., Zhao, Y., Han, B., Li, T., Zhao, P., Xu, J. W., & Yu, X. (2020). Strigolactone mediates jasmonic acid-induced lipid production in microalgae Monoraphidium sp. QLY-1 under nitrogen deficiency conditions. Bioresource Technology 306, 123107. https://doi.org/10.1016/j.biortech.2020.123107.

VS (Vietnam Standards). (2009). Fish and fishery products - Determination of fat content (TCVN 3703:2009). Retrieved July 05, 2023, from https://luatvietnam.vn/nong-nghiep/tieuchuan-viet-nam-tcvn-3703-2009-223173-d3.html.

Yaakob, M. A., Mohamed, R. M. S. R., Gheethi, A. A., Gokare, R. A., & Ambati, R. R. (2021). Influence of nitrogen and phosphorus on microalgal growth, biomass, lipid, and fatty acid production: An overview. Cells 10(2), 393. https://doi.org/10.3390/cells10020393.

Zarrinmehr, M. J., Daneshvar, E., Nigam, S., Gopinath, K. P., Biswas, J. K., Kwon, E. E., Wang, H., Farhadian, O., & Bhatnagar, A. (2022). The effect of solvents polarity and extraction conditions on the microalgal lipids yield, fatty acids profile, and biodiesel properties. Bioresource Technology 344B, 126303. https://doi.org/10.1016/j.biortech.2021.126303.

Zhou, J., Wang, M., Saraiva, J. A., Martins, A. P., Pinto, C. A., Prieto, M. A., Gandara, J. S., Cao, H., Xiao, J., & Barba, F. J. (2022). Extraction of lipids from microalgae using classical and innovative approaches. Food Chemistry 384, 132236. https://doi.org/10.1016/j.foodchem.2022.132236.