Mai N. Tran , Hoang M. Nguyen , Loc T. Le , Hue T. Doan , Mi T. M. Nguyen , Binh T. Nguyen , & Phat X. Dinh *

* Correspondence: Dinh Xuan Phat (email: dinhxuanphat@hcmuaf.edu.vn)

Main Article Content

Abstract

Protein p72 is the major surface protein of African swine fever virus (ASFV), which is immunogenic and can prime the host to elicit a protective immune response, while G protein is the surface glycoprotein of vesicular stomatitis virus (VSV), which is well-known to be a strong antigen to stimulate an effective humoral immunity. The aim of this study was to sequence fulllength p72 gene of a field strain of ASFV causing typical ASF in Dong Nai province in 2020 and fuse this p72 gene with VSV G gene to generate a recombinant fusion gene G-p72 that could simultaneously express both proteins and stimulate a better host immune response than p72 expression alone. The sequence of the gene showed 99.59% nucleotide sequence similarity to an ASFV isolate from China. The PCR was employed to produce the recombinant G-p72 gene, which was cloned into plasmid pET28a, followed by transformation into E. coli BL21 (DE3) for protein expression. The G-p72 expression was induced at 37°C and 28°C for 6 and 16 h, respectively. The expression showed that G-p72 was observed at 28°C for 16 h. In summary, the full length p72 gene of a field strain of ASFV was successfully sequenced and expressed as the recombinant G-p72 protein in E. coli BL21 (DE3). The expression level of the G-p72 fusion should be optimized and the immunogenicity of the recombinant protein should be examined in futher studies.

Keywords: Gene fusion, G-VSV, Protein expression, p72-ASFV

Article Details

References

Alonso, C., Borca, M., Dixon, L., Revilla, Y., Rodriguez, F., Escribano, J. M., & ICTV Report Consortium. (2018). ICTV virus taxonomy profile: Asfarviridae. Journal of General Virology 99(5), 613-614. https://doi.org/10.1099/jgv.0.001049.

Andrés, G., García-Escudero, R., Viñuela, E., Salas, M. L., & Rodríguez, J. M. (2001). African swine fever virus structural protein pE120R is essential for virus transport from assembly sites to plasma membrane but not for infectivity. Journal of Virology 75(15), 6758-6768. https://doi.org/10.1128/jvi.75.15.6758-6768.2001.

Blome, S., Gabriel, C., & Beer, M. (2014). Modern adjuvants do not enhance the efficacy of an inactivated African swine fever virus vaccine preparation. Vaccine 32(31), 3879-3882. https://doi.org/10.1016/j.vaccine.2014.05.051.

Brakel, K. A., Ma, Y., Binjawadagi, R., Harder, O., Watts, M., Li, J., Binjawadagi, B., & Niewiesk, S. (2022). Codon-optimization of the respiratory syncytial virus (RSV) G protein expressed in a vesicular stomatitis virus (VSV) vector improves immune responses in a cotton rat model. Virology 575, 101-110. https://doi.org/10.1016/j.virol.2022.08.017.

Cadenas-Fernández, E., Sánchez-Vizcaíno, J. M., Kosowska, A., Rivera, B., Mayoral-Alegre, F., Rodríguez-Bertos, A., Yao, J., Bray, J. B., Lokhandwala, S., Mwangi, W., & Barasona, J. A. (2020). Adenovirus-vectored African swine fever virus antigens cocktail is not protective against virulent Arm07 isolate in Eurasian wild boar. Pathogens 9(3), 171. https://doi.org/10.3390/pathogens9030171.

Chattopadhyay, A., Wang, E., Seymour, R., Weaver, S. C., & Rose, J. K. (2013). A chimeric vesiculo/alphavirus is an effective alphavirus vaccine. Journal of Virology 87(1), 395-402. https://doi.org/10.1128/jvi.01860-12.

Cobleigh, M. A., Buonocore, L., Uprichard, S. L., Rose, J. K., & Robek, M. D. (2010). A vesicular stomatitis virus-based hepatitis B virus vaccine vector provides protection against challenge in a single dose. Journal of Virology 84(15), 7513-7522. https://doi.org/10.1128/jvi.00200-10.

Costard, S., Wieland, B., De Glanville, W., Jori, F., Rowlands, R., Vosloo, W., Roger, F., Rfeiffer, D. U., & Dixon, L. K. (2009). African swine fever: how can global spread be prevented?. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1530), 2683-2696.
https://doi.org/10.1098/rstb.2009.0098.

Crozier, I., Britson, K. A., Wolfe, D. N., Klena, J. D., Hensley, L. E., Lee, J. S., Wolfraim, L. A., Taylor, K. L. Higgs, E. S., Montgomery, J. M., & Martins, K. A. (2022). The evolution of medical countermeasures for Ebola virus disease: lessons learned and next steps. Vaccines 10(8), 1213.

Dinh, P. X., Panda, D., Das, P. B., Das, S. C., Das, A., & Pattnaik, A. K. (2012). A single amino acid change resulting in loss of fluorescence of eGFP in a viral fusion protein confers fitness and growth advantage to the recombinant vesicular stomatitis virus. Virology 432(2), 460-469. https://doi.org/10.1016/j.virol.2012.07.004.

Ezelle, H. J., Markovic, D., & Barber, G. N. (2002). Generation of hepatitis C virus-like particles by use of a recombinant vesicular stomatitis virus vector. Journal of Virology 76(23), 12325-12334. https://doi.org/10.1128/JVI.76.23.12325-12334.2002.

Falkensammer, B., Rubner, B., Hiltgartner, A., Wilflingseder, D., Hennig, C. S., Kuate, S., Überla, K., Norley, S., Strasak, A., & Stoiber, H. (2009). Role of complement and antibodies in controlling infection with pathogenic simian immunodeficiency virus (SIV) in macaques vaccinated with replication-deficient viral vectors. Retrovirology 6, 1-12. https://doi.org/10.1186/1742-4690-6-60.

Gaudreault, N. N., & Richt, J. A. (2019). Subunit vaccine approaches for African swine fever virus. Vaccines 7(2), 56. https://doi.org/10.3390/vaccines7020056.

Goatley, L. C., Reis, A. L., Portugal, R., Goldswain, H., Shimmon, G. L., Hargreaves, Z., Ho, C., Montoya, M., Sánchez-Cordón, P. J., Taylor, G., Dixon, L. K., & Netherton, C. L. (2020). A pool of eight virally vectored African swine fever antigens protect pigs against fatal disease. Vaccines 8(2) 234. https://doi.org/10.3390/vaccines8020234.

Kollnberger, S. D., Gutierrez-Castañeda, B., FosterCuevas, M., Corteyn, A., & Parkhouse, R. M. E. (2002). Identification of the principal serological immunodeterminants of African swine fever virus by screening a virus cDNA library with antibody. Journal of General Virology 83(6), 1331-1342. https://doi.org/10.1099/0022-1317-83-6-1331.

Liu, G., Cao, W., Salawudeen, A., Zhu, W., Emeterio, K., Safronetz, D., & Banadyga, L. (2021). Vesicular stomatitis virus: from agricultural pathogen to vaccine vector. Pathogens 10(9), 1092. https://doi.org/10.3390/pathogens10091092.

Miao, C., Yang, S., Shao, J., Zhou, G., Ma, Y., Wen, S., Hou, Z., Peng, D., Guo, H., Liu, Wei., & Chang, H. (2023). Identification of p72 epitopes of African swine fever virus and preliminary application. Frontiers in Microbiology 14, 1126794. https://doi.org/10.3389/fmicb.2023.1126794.

Nguyen, V. T., Cho, K. H., Mai, N. T. A., Park, J. Y., Trinh, T. B. N., Jang, M. K., Nguyen, T. T. H., Vu, X. D., Nguyen, V. D.., Ambagala, A., Kim, Y., & Le, V. P. (2022). Multiple variants of African swine fever virus circulating in Vietnam. Archives of Virology 167(4), 1137-1140. https://doi.org/10.1007/s00705-022-05363-4.

Ramirez-Medina, E., Vuono, E., Silva, E., Rai, A., Valladares, A., Pruitt, S., Espinoza, N., Velazquez-Salinas, L., Borca, M., Gladue, D. P., Borca, M. V., & Gladue, D. P. (2022). Evaluation of the deletion of MGF110-5L-6L on swine virulence from the pandemic strain of African swine fever virus and use as a DIVA marker in vaccine candidate ASFV-G-ΔI177L. Journal of Virology 96(14), e00597-22. https://doi.org/10.1128/jvi.00597-22.

Revilla, Y., Pérez-Núñez, D., & Richt, J. A. (2018). African swine fever virus biology and vaccine approaches. Advances in Virus Research 100, 41-74. https://doi.org/10.1016/bs.aivir.2017.10.002.

Rozo-Lopez, P., Drolet, B. S., & Londoño-Renteria, B. (2018). Vesicular stomatitis virus transmission: a comparison of incriminated vectors. Insects 9(4). 190. https://doi.org/10.3390/insects9040190.

Scher, G., & Schnell, M. J. (2020). Rhabdoviruses as vectors for vaccines and therapeutics. Current Opinion in Virology 44, 169-182. https://doi.org/10.1016/j.coviro.2020.09.003.

Schwartz, J. A., Buonocore, L., Roberts, A., SuguitanJr, A., Kobasa, D., Kobinger, G., Feldmann, H., Subbarao, K., & Rose, J. K. (2007). Vesicular stomatitis virus vectors expressing avian influenza H5 HA induce cross-neutralizing antibodies and long-term protection. Virology 366(1), 166-173. https://doi.org/10.1016/j.virol.2007.04.021.

Sidoruk, K. V., Pokrovsky, V. S., Borisova, A. A., Omeljanuk, N. M., Aleksandrova, S. S., Pokrovskaya, M. V., Gladilina, J. A., Bogush, V. G., & Sokolov, N. N. (2011). Creation of a producent, optimization of expression, and purification of recombinant Yersinia pseudotuberculosis L-asparaginase. Bulletin of Experimental Biology and Medicine 152, 219-223. https://doi.org/10.1007/s10517-011-1493-7.

Urbano, A. C., & Ferreira, F. (2020). Role of the DNAbinding protein pA104R in ASFV genome packaging and as a novel target for vaccine and drug development. Vaccines 8(4), 585. https://doi.org/10.3390/vaccines8040585.

Van den Pol, A. N., Mao, G., Chattopadhyay, A., Rose, J. K., & Davis, J. N. (2017). Chikungunya, influenza, Nipah, and Semliki Forest chimeric viruses with vesicular stomatitis virus: actions in the brain. Journal of Virology 91(6), 10-1128. https://doi.org/10.1128/jvi.02154-16.

Velazquez-Salinas, L., Pauszek, S. J., Holinka, L. G., Gladue, D. P., Rekant, S. I., Bishop, E. A., Stenfeldt, C., Verdugo-Rodriguez,. A., Borca, M. V., Arzt, J., & Rodriguez, L. L. (2020). A single amino acid substitution in the matrix protein (M51R) of vesicular stomatitis New Jersey virus impairs replication in cultured porcine macrophages and results in significant attenuation in pigs. Frontiers in Microbiology 11, 1123. https://doi.org/10.3389/fmicb.2020.01123.

Yin, D., Geng, R., Shao, H., Ye, J., Qian, K., Chen, H., & Qin, A. (2022). Identification of novel linear epitopes in p72 protein of African swine fever virus recognized by monoclonal antibodies. Frontiers in Microbiology 13, 1055820. https://doi.org/10.3389/fmicb.2022.1055820.