Production of essential oils and sugar-rich hydrolysate from betel leaves (Piper betle)
Main Article Content
Abstract
The study was carried out to fully utilize betel leaves for the extraction of essential oils and production of sugar-rich hydrolysates from the betel leaves residues. Essential oils in the betel leaves were extracted by hydrodistillation and the betel leaves residues were enzymatically hydrolyzed to obtain sugar-rich hydrolysates. Antioxidant and antibacterial activity of the essential oils and the hydrolysates were investigated. Chemical composition analysis of the betel leaves showed that they contained 2.23% reducing sugars, 21.10% polysaccharides, 68.01 mg/g phenolics, 6.17 mg/g flavonoids, 12.05% ash, and 1.63% tannins. Betel essential oils content was 3.14%, with the main components being eugenol (50.37%), γ-muurolene (9.65%), and α-copaene (8.22%). Betel essential oils exhibited antioxidant activity with the IC50 of 0.13 mg/mL and antibacterial capacity against three strains of bacteria, including Escherichia coli, Samonella sp. and Bacillus cereus. The enzymatic hydrolysis of betel leaves residues using Ultraflo Max with a ratio of enzyme to substrate of 5% for 96 h produced the highest amount of reducing sugars of 10.66 g/L containing 48.31% glucose. The results suggest that betel leaves residues hydrolysate can be used as carbon sources for fermentation processes to produce valueadded commodities in further investigation.
Article Details
References
Arambewela, L., Kumaratunga, K. G. A., & Dias, K. (2005). Studies on piper betle of Sri Lanka. Journal of The National Science Foundation of Sri Lanka 33(2), 133-139. https://doi.org/10.4038/jnsfsr.v33i2.2343.
Arambewela, L. S., Arawwawala, M. L., Withanage, D., & Kulathunga, S. (2010). Efficacy of betel cream on skin ailments. Journal of Complementary and Integrative Medicine 7(1). https://doi.org/10.2202/1553-3840.1391.
Bauer, A. W., Perry, D. M., & Kirby, W. M. (1959). Single-disk antibiotic-sensitivity testing of staphylococci: An analysis of technique and results. AMA Archives of Internal Medicine 104(2), 208-216. https://doi.org/10.1001/archinte.1959.00270080034004.
Berlowska, J., Binczarski, M., Dudkiewicz, M., Kalinowska, H., Witonska, I. A., & Stanishevsky, A. V. (2015). A low-cost method for obtaining high-value bio-based propylene glycol from sugar beet pulp. RSC Advances 5(3), 2299-2304.
https://doi.org/10.1039/C4RA12839G.
Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature 181(4617), 1199-1200.
Bondet, V., Brand-Williams, W., & Berset, C. L. W. T. (1997). Kinetics and mechanisms of antioxidant activity using the DPPH. free radical method. LWT-Food Science and Technology 30(6), 609-615. https://doi.org/10.1006/fstl.1997.0240.
Chowdhury, U., & Baruah, P. K. (2020). Betelvine (Piper betle L.): A potential source for oral care. Current Botany 11, 87-92. https:/doi.org/10.25081/cb.2020.v11.6130.
Favaretto, D. P. C., Rempel, A., Lanzini, J. R., Silva, A. C. M., Lazzari, T., Barbizan, L. D., & Treichel, H. (2023). Fruit residues as biomass for bioethanol production using enzymatic hydrolysis as pretreatment. World Journal of Microbiology and Biotechnology 39(6), 144. https://doi.org/10.1007/s11274-023-03588-2.
Fidyt, K., Fiedorowicz, A., Strządała, L., & Szumny, A. (2016). β‐caryophyllene and β‐caryophyllene oxide-natural compounds of anticancer and analgesic properties. Cancer Medicine 5(10), 3007-3017. https://doi.org/10.1002/cam4.816.
Glevitzky, I., Dumitrel, G. A., Glevitzky, M., Pasca, B., Otrisal, P., Bungau, S., & Popa, M. J. R. C. (2019). Statistical analysis of the relationship between antioxidant activity and the structure of flavonoid compounds. Revista de Chimie 70(9), 3103-3107. https://doi.org/10.37358/RC.19.9.7497.
Gulçin, I. (2011). Antioxidant activity of eugenol: A structure-activity relationship study. Journal of Medicinal Food 14(9), 975-985. https://doi.org/10.1089/jmf.2010.0197.
Huynh, K. T., Tran, N. N. C, Ha, M. T., Nguyen, K. N., Do, V. H., Tran, T. N. T, Pham, T. A., & Chu, P. N. S. (2015). Essential oils and biological activity of Piper betle L. leaves. Journal of Analytical Sciences 20(3), 80-90.
Joesoef, M. R., Sumampouw, H., Linnan, M., Schmid, S., Idajadi, A., & Louis, M. S. (1996). Douching and sexually transmitted diseases in pregnant women in Surabaya, Indonesia. American Journal of Obstetrics and Gynecology 174(1), 115-119. https://doi.org/10.1016/S0002-9378(96)70382-4.
Lesage-Meessen, L., Bou, M., Sigoillot, J. C., Faulds, C. B., & Lomascolo, A. (2015). Essential oils and distilled straws of lavender and lavandin: A review of current use and potential application in white biotechnology. Applied Microbiology and Biotechnology 99, 3375-3385. https://doi.org/10.1007/s00253-015-6511-7.
Madhumita, M., Guha, P., & Nag, A. (2019). Extraction of betel leaves (Piper betle L.) essential oil and its bio-actives identification: Process optimization, GC-MS analysis and anti-microbial activity. Industrial Crops and Products 138, 111578. https://doi.org/10.1016/j.indcrop.2019.111578.
Makhuvele, R., Naidu, K., Gbashi, S., Thipe, V. C., Adebo, O. A., & Njobeh, P. B. (2020). The use of plant extracts and their phytochemicals for control of toxigenic fungi and mycotoxins. Heliyon 6(10). https://doi.org/10.1016/j.heliyon.2020.e05291.
Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31(3), 426-428. https://doi.org/10.1021/ac60147a030.
Montenegro-Landívar, M. F., Tapia-Quirós, P., Vecino, X., Reig, M., Valderrama, C., Granados, M., Cortina, J. L., & Saurina, J. (2021). Polyphenols and their potential role to fight viral diseases: An overview. Science of The Total Environment 801, 149719. https://doi.org/10.1016/j.scitotenv.2021.149719.
Muruganandam, L., Krishna, A., Reddy, J., & Nirmala, G. S. (2017). Optimization studies on extraction of phytocomponents from betel leaves. ResourceEfficient Technologies 3(4), 385-393. https://doi.org/10.1016/j.reffit.2017.02.007.
Nayaka, N. M. D. M. W., Sasadara, M. M. V., Sanjaya, D. A., Yuda, P. E. S. K., Dewi, N. L. K. A. A., Cahyaningsih, E., & Hartati, R. (2021). Piper betle (L): Recent review of antibacterial and antifungal properties, safety profiles, and commercial applications. Molecules 26(8), 2321. https://doi.org/10.3390/molecules26082321.
Nguyen, T. C., Nguyen, T. N. C., Pham, K. N., Do, D. P., Duong, T. K, & Nguyen, T. T. T. (2016). Chemical composition and antimicrobial activity of essential oils from leaves of Piper betel L. Can Tho University Journal of Sciences 45a, 28-32. https://doi.org/10.22144/ctu.jvn.2016.508.
Okunowo, W. O., Oyedeji, O., Afolabi, L. O., & Matanmi, E. (2013). Essential oil of grape fruit (Citrus paradisi) peels and its antimicrobial activities. American Journal of Plant Sciences 4(7B), 1-9. https://doi.org/10.4236/ajps.2013.47A2001.
Paz, A., Outeiriño, D., Guerra, N. P., & Domínguez, J. M. (2019). Enzymatic hydrolysis of brewer’s spent grain to obtain fermentable sugars. Bioresource Technology 275, 402-409. https://doi.org/10.1016/j.biortech.2018.12.082.
Pham, T. A. H. (2003). Biochemical technique. Ho Chi Minh City, Vietnam: National University of Ho Chi Minh City Publishing House.
Pham, T. K., Nguyen, T. T, & Tran, V. T. (1998). Lectures on medicinal plants II. Ha Noi University of Pharmacy, Ha Noi, Vietnam.
Pradhan, D., Suri, K. A., Pradhan, D. K., & Biswasroy, P. (2013). Golden heart of the nature: Piper betle L. Journal of Pharmacognosy and Phytochemistry 1(6), 147-167.
Salehi, B., Zakaria Z.A., Gyawali R., Ibrahim S.A., Rajkovic J., Shinwari Z.K., Khan T., SharifiRad J., Ozleyen A., & Turkdonmez E. (2019). Piper species: A comprehensive review on their phytochemistry, biological activities and applications. Molecules 24(7), 1364. https://doi.org/10.3390/molecules24071364.
Sharma, K., Kumar, V., Kaur, J., Tanwar, B., Goyal, A., Sharma, R., Gat, Y., & Kumar, A. (2021). Health effects, sources, utilization and safety of tannins: A critical review. Toxin Reviews 40(4), 432-444. https://doi.org/10.1080/15569543.2019.1662813.
Shraim, A. M., Ahmed, T. A., Rahman, M. M., & Hijji, Y. M. (2021). Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT 150, 111932. https://doi.org/10.1016/j.lwt.2021.111932.
Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology 299, 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1.
Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. L. A. P. (2008). Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure 1617(1), 1-16.