Truc T. T. Tran , Anh T. V. Nguyen , Dong N. T. Le , Vinh D. H. Nguyen , & Ly T. P. Trinh *

* Correspondence: Trinh Thi Phi Ly (email: phily@hcmuaf.edu.vn)

Main Article Content

Abstract

The study was carried out to fully utilize betel leaves for the extraction of essential oils and production of sugar-rich hydrolysates from the betel leaves residues. Essential oils in the betel leaves were extracted by hydrodistillation and the betel leaves residues were enzymatically hydrolyzed to obtain sugar-rich hydrolysates. Antioxidant and antibacterial activity of the essential oils and the hydrolysates were investigated. Chemical composition analysis of the betel leaves showed that they contained 2.23% reducing sugars, 21.10% polysaccharides, 68.01 mg/g phenolics, 6.17 mg/g flavonoids, 12.05% ash, and 1.63% tannins. Betel essential oils content was 3.14%, with the main components being eugenol (50.37%), γ-muurolene (9.65%), and α-copaene (8.22%). Betel essential oils exhibited antioxidant activity with the IC50 of 0.13 mg/mL and antibacterial capacity against three strains of bacteria, including Escherichia coli, Samonella sp. and Bacillus cereus. The enzymatic hydrolysis of betel leaves residues using Ultraflo Max with a ratio of enzyme to substrate of 5% for 96 h produced the highest amount of reducing sugars of 10.66 g/L containing 48.31% glucose. The results suggest that betel leaves residues hydrolysate can be used as carbon sources for fermentation processes to produce valueadded commodities in further investigation. 

Keywords: Antibacterial capacity, Antioxidant activity, Betel leaves, Chemical compositions, Essential oils

Article Details

References

Arambewela, L., Kumaratunga, K. G. A., & Dias, K. (2005). Studies on piper betle of Sri Lanka. Journal of The National Science Foundation of Sri Lanka 33(2), 133-139. https://doi.org/10.4038/jnsfsr.v33i2.2343.

Arambewela, L. S., Arawwawala, M. L., Withanage, D., & Kulathunga, S. (2010). Efficacy of betel cream on skin ailments. Journal of Complementary and Integrative Medicine 7(1). https://doi.org/10.2202/1553-3840.1391.

Bauer, A. W., Perry, D. M., & Kirby, W. M. (1959). Single-disk antibiotic-sensitivity testing of staphylococci: An analysis of technique and results. AMA Archives of Internal Medicine 104(2), 208-216. https://doi.org/10.1001/archinte.1959.00270080034004.

Berlowska, J., Binczarski, M., Dudkiewicz, M., Kalinowska, H., Witonska, I. A., & Stanishevsky, A. V. (2015). A low-cost method for obtaining high-value bio-based propylene glycol from sugar beet pulp. RSC Advances 5(3), 2299-2304.
https://doi.org/10.1039/C4RA12839G.

Blois, M. S. (1958). Antioxidant determinations by the use of a stable free radical. Nature 181(4617), 1199-1200.

Bondet, V., Brand-Williams, W., & Berset, C. L. W. T. (1997). Kinetics and mechanisms of antioxidant activity using the DPPH. free radical method. LWT-Food Science and Technology 30(6), 609-615. https://doi.org/10.1006/fstl.1997.0240.

Chowdhury, U., & Baruah, P. K. (2020). Betelvine (Piper betle L.): A potential source for oral care. Current Botany 11, 87-92. https:/doi.org/10.25081/cb.2020.v11.6130.

Favaretto, D. P. C., Rempel, A., Lanzini, J. R., Silva, A. C. M., Lazzari, T., Barbizan, L. D., & Treichel, H. (2023). Fruit residues as biomass for bioethanol production using enzymatic hydrolysis as pretreatment. World Journal of Microbiology and Biotechnology 39(6), 144. https://doi.org/10.1007/s11274-023-03588-2.

Fidyt, K., Fiedorowicz, A., Strządała, L., & Szumny, A. (2016). β‐caryophyllene and β‐caryophyllene oxide-natural compounds of anticancer and analgesic properties. Cancer Medicine 5(10), 3007-3017. https://doi.org/10.1002/cam4.816.

Glevitzky, I., Dumitrel, G. A., Glevitzky, M., Pasca, B., Otrisal, P., Bungau, S., & Popa, M. J. R. C. (2019). Statistical analysis of the relationship between antioxidant activity and the structure of flavonoid compounds. Revista de Chimie 70(9), 3103-3107. https://doi.org/10.37358/RC.19.9.7497.

Gulçin, I. (2011). Antioxidant activity of eugenol: A structure-activity relationship study. Journal of Medicinal Food 14(9), 975-985. https://doi.org/10.1089/jmf.2010.0197.

Huynh, K. T., Tran, N. N. C, Ha, M. T., Nguyen, K. N., Do, V. H., Tran, T. N. T, Pham, T. A., & Chu, P. N. S. (2015). Essential oils and biological activity of Piper betle L. leaves. Journal of Analytical Sciences 20(3), 80-90.

Joesoef, M. R., Sumampouw, H., Linnan, M., Schmid, S., Idajadi, A., & Louis, M. S. (1996). Douching and sexually transmitted diseases in pregnant women in Surabaya, Indonesia. American Journal of Obstetrics and Gynecology 174(1), 115-119. https://doi.org/10.1016/S0002-9378(96)70382-4.

Lesage-Meessen, L., Bou, M., Sigoillot, J. C., Faulds, C. B., & Lomascolo, A. (2015). Essential oils and distilled straws of lavender and lavandin: A review of current use and potential application in white biotechnology. Applied Microbiology and Biotechnology 99, 3375-3385. https://doi.org/10.1007/s00253-015-6511-7.

Madhumita, M., Guha, P., & Nag, A. (2019). Extraction of betel leaves (Piper betle L.) essential oil and its bio-actives identification: Process optimization, GC-MS analysis and anti-microbial activity. Industrial Crops and Products 138, 111578. https://doi.org/10.1016/j.indcrop.2019.111578.

Makhuvele, R., Naidu, K., Gbashi, S., Thipe, V. C., Adebo, O. A., & Njobeh, P. B. (2020). The use of plant extracts and their phytochemicals for control of toxigenic fungi and mycotoxins. Heliyon 6(10). https://doi.org/10.1016/j.heliyon.2020.e05291.

Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry 31(3), 426-428. https://doi.org/10.1021/ac60147a030.

Montenegro-Landívar, M. F., Tapia-Quirós, P., Vecino, X., Reig, M., Valderrama, C., Granados, M., Cortina, J. L., & Saurina, J. (2021). Polyphenols and their potential role to fight viral diseases: An overview. Science of The Total Environment 801, 149719. https://doi.org/10.1016/j.scitotenv.2021.149719.

Muruganandam, L., Krishna, A., Reddy, J., & Nirmala, G. S. (2017). Optimization studies on extraction of phytocomponents from betel leaves. ResourceEfficient Technologies 3(4), 385-393. https://doi.org/10.1016/j.reffit.2017.02.007.

Nayaka, N. M. D. M. W., Sasadara, M. M. V., Sanjaya, D. A., Yuda, P. E. S. K., Dewi, N. L. K. A. A., Cahyaningsih, E., & Hartati, R. (2021). Piper betle (L): Recent review of antibacterial and antifungal properties, safety profiles, and commercial applications. Molecules 26(8), 2321. https://doi.org/10.3390/molecules26082321.

Nguyen, T. C., Nguyen, T. N. C., Pham, K. N., Do, D. P., Duong, T. K, & Nguyen, T. T. T. (2016). Chemical composition and antimicrobial activity of essential oils from leaves of Piper betel L. Can Tho University Journal of Sciences 45a, 28-32. https://doi.org/10.22144/ctu.jvn.2016.508.

Okunowo, W. O., Oyedeji, O., Afolabi, L. O., & Matanmi, E. (2013). Essential oil of grape fruit (Citrus paradisi) peels and its antimicrobial activities. American Journal of Plant Sciences 4(7B), 1-9. https://doi.org/10.4236/ajps.2013.47A2001.

Paz, A., Outeiriño, D., Guerra, N. P., & Domínguez, J. M. (2019). Enzymatic hydrolysis of brewer’s spent grain to obtain fermentable sugars. Bioresource Technology 275, 402-409. https://doi.org/10.1016/j.biortech.2018.12.082.

Pham, T. A. H. (2003). Biochemical technique. Ho Chi Minh City, Vietnam: National University of Ho Chi Minh City Publishing House.

Pham, T. K., Nguyen, T. T, & Tran, V. T. (1998). Lectures on medicinal plants II. Ha Noi University of Pharmacy, Ha Noi, Vietnam.

Pradhan, D., Suri, K. A., Pradhan, D. K., & Biswasroy, P. (2013). Golden heart of the nature: Piper betle L. Journal of Pharmacognosy and Phytochemistry 1(6), 147-167.

Salehi, B., Zakaria Z.A., Gyawali R., Ibrahim S.A., Rajkovic J., Shinwari Z.K., Khan T., SharifiRad J., Ozleyen A., & Turkdonmez E. (2019). Piper species: A comprehensive review on their phytochemistry, biological activities and applications. Molecules 24(7), 1364. https://doi.org/10.3390/molecules24071364.

Sharma, K., Kumar, V., Kaur, J., Tanwar, B., Goyal, A., Sharma, R., Gat, Y., & Kumar, A. (2021). Health effects, sources, utilization and safety of tannins: A critical review. Toxin Reviews 40(4), 432-444. https://doi.org/10.1080/15569543.2019.1662813.

Shraim, A. M., Ahmed, T. A., Rahman, M. M., & Hijji, Y. M. (2021). Determination of total flavonoid content by aluminum chloride assay: A critical evaluation. LWT 150, 111932. https://doi.org/10.1016/j.lwt.2021.111932.

Singleton, V. L., Orthofer, R., & Lamuela-Raventós, R. M. (1999). Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods in Enzymology 299, 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1.

Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. L. A. P. (2008). Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure 1617(1), 1-16.